Domínguez-Castro Adrian, Lien-Medrano Carlos R, Maghrebi Khaoula, Messaoudi Sabri, Frauenheim Thomas, Fihey Arnaud
Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Germany.
Nanoscale. 2021 Apr 14;13(14):6786-6797. doi: 10.1039/d1nr00213a. Epub 2021 Mar 10.
The electron flow between a metallic aggregate and an organic molecule after excitation with light is a crucial step on which hybrid photovoltaic nanomaterials are based. So far, designing such devices with the help of theoretical approaches has been heavily limited by the computational cost of quantum dynamics models able to track the evolution of the excited states over time. In this article, we present the first application of the time-dependent density functional tight-binding (TD-DFTB) method for an experimental nanometer-sized gold-organic system consisting of a hexyl-protected Au cluster labelled with a pyrene fluorophore, in which the fluorescence quenching of the pyrene is attributed to the electron transfer from the metallic cluster to the dye. The full quantum rationalization of the electron transfer is attained through quantum dynamics simulations, highlighting the crucial role of the protecting ligand shell in electron transfer, as well as the coupling with nuclear movement. This work paves the way towards the fast and accurate theoretical design of optoelectronic nanodevices.
在用光激发后,金属聚集体与有机分子之间的电子流动是混合光伏纳米材料所基于的关键步骤。到目前为止,借助理论方法设计此类器件一直受到能够跟踪激发态随时间演化的量子动力学模型计算成本的严重限制。在本文中,我们首次将含时密度泛函紧束缚(TD-DFTB)方法应用于一个实验性的纳米级金-有机系统,该系统由一个用芘荧光团标记的己基保护金簇组成,其中芘的荧光猝灭归因于电子从金属簇转移到染料。通过量子动力学模拟实现了电子转移的完全量子合理化,突出了保护配体壳层在电子转移中的关键作用以及与核运动的耦合。这项工作为光电子纳米器件的快速准确理论设计铺平了道路。