Suppr超能文献

一种用于高效挥发性传感与鉴别优化的电子鼻。

An Optimized E-nose for Efficient Volatile Sensing and Discrimination.

作者信息

Santos Gonçalo, Alves Cláudia, Pádua Ana Carolina, Palma Susana, Gamboa Hugo, Roque Ana Cecília

机构信息

UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

Laboratório de Instrumentação Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciencias e Tecnologia da Universidade NOVA de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal.

出版信息

Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019;1:36-46. doi: 10.5220/0007390700360046.

Abstract

Electronic noses (E-noses), are usually composed by an array of sensors with different selectivities towards classes of VOCs (Volatile Organic Compounds). These devices have been applied to a variety of fields, including environmental protection, public safety, food and beverage industries, cosmetics, and clinical diagnostics. This work demonstrates that it is possible to classify eleven VOCs from different chemical classes using a single gas sensing biomaterial that changes its optical properties in the presence of VOCs. To accomplish this, an in-house built E-nose, tailor-made for the novel class of gas sensing biomaterials, was improved and combined with powerful machine learning techniques. The device comprises a delivery system, a detection system and a data acquisition and control system. It was designed to be stable, miniaturized and easy-to-handle. The data collected was pre-processed and features and curve fitting parameters were extracted from the original response. A recursive feature selection method was applied to select the best features, and then a Support Vector Machine classifier was implemented to distinguish the eleven distinct VOCs. The results show that the followed methodology allowed the classification of all the VOCs tested with 94.6% (± 0.9%) accuracy.

摘要

电子鼻通常由对各类挥发性有机化合物(VOCs)具有不同选择性的传感器阵列组成。这些设备已应用于多个领域,包括环境保护、公共安全、食品饮料行业、化妆品以及临床诊断。这项工作表明,使用一种在VOCs存在时会改变其光学特性的单一气体传感生物材料,就有可能对来自不同化学类别的11种VOCs进行分类。为实现这一目标,对一种为新型气体传感生物材料量身定制的自制电子鼻进行了改进,并将其与强大的机器学习技术相结合。该设备包括一个输送系统、一个检测系统以及一个数据采集与控制系统。其设计旨在实现稳定、小型化且易于操作。对收集到的数据进行了预处理,并从原始响应中提取了特征和曲线拟合参数。应用递归特征选择方法来选择最佳特征,然后实施支持向量机分类器以区分这11种不同的VOCs。结果表明,所采用的方法能够以94.6%(±0.9%)的准确率对所有测试的VOCs进行分类。

相似文献

1
An Optimized E-nose for Efficient Volatile Sensing and Discrimination.一种用于高效挥发性传感与鉴别优化的电子鼻。
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019;1:36-46. doi: 10.5220/0007390700360046.
2
Design and Evolution of an Opto-electronic Device for VOCs Detection.用于挥发性有机化合物检测的光电器件的设计与演进
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2018;1:48-55. doi: 10.5220/0006558100480055.
3
Fish Gelatin-based Films for Gas Sensing.用于气体传感的鱼明胶基薄膜
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2021 Feb;2021:32-39. doi: 10.5220/0010206200320039.
7
Scalable and Easy-to-use System Architecture for Electronic Noses.用于电子鼻的可扩展且易于使用的系统架构。
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2018;1:179-186. doi: 10.5220/0006597101790186.
9
Effect of film thickness in gelatin hybrid gels for artificial olfaction.明胶混合凝胶中膜厚度对人工嗅觉的影响。
Mater Today Bio. 2019 Mar 22;1:100002. doi: 10.1016/j.mtbio.2019.100002. eCollection 2019 Jan.

引用本文的文献

2
Fish Gelatin-based Films for Gas Sensing.用于气体传感的鱼明胶基薄膜
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2021 Feb;2021:32-39. doi: 10.5220/0010206200320039.

本文引用的文献

1
Protein- and Peptide-Based Biosensors in Artificial Olfaction.基于蛋白质和肽的生物传感器在人工嗅觉中的应用。
Trends Biotechnol. 2018 Dec;36(12):1244-1258. doi: 10.1016/j.tibtech.2018.07.004. Epub 2018 Sep 10.
2
Design and Evolution of an Opto-electronic Device for VOCs Detection.用于挥发性有机化合物检测的光电器件的设计与演进
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2018;1:48-55. doi: 10.5220/0006558100480055.
4
Bioelectronic nose: Current status and perspectives.生物电子鼻:现状与展望。
Biosens Bioelectron. 2017 Jan 15;87:480-494. doi: 10.1016/j.bios.2016.08.080. Epub 2016 Aug 26.
5
Electronic Nose Feature Extraction Methods: A Review.电子鼻特征提取方法综述
Sensors (Basel). 2015 Nov 2;15(11):27804-31. doi: 10.3390/s151127804.
6
Electronic nose: current status and future trends.电子鼻:现状与未来趋势。
Chem Rev. 2008 Feb;108(2):705-25. doi: 10.1021/cr068121q. Epub 2008 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验