Santos Gonçalo, Alves Cláudia, Pádua Ana Carolina, Palma Susana, Gamboa Hugo, Roque Ana Cecília
UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
Laboratório de Instrumentação Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciencias e Tecnologia da Universidade NOVA de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019;1:36-46. doi: 10.5220/0007390700360046.
Electronic noses (E-noses), are usually composed by an array of sensors with different selectivities towards classes of VOCs (Volatile Organic Compounds). These devices have been applied to a variety of fields, including environmental protection, public safety, food and beverage industries, cosmetics, and clinical diagnostics. This work demonstrates that it is possible to classify eleven VOCs from different chemical classes using a single gas sensing biomaterial that changes its optical properties in the presence of VOCs. To accomplish this, an in-house built E-nose, tailor-made for the novel class of gas sensing biomaterials, was improved and combined with powerful machine learning techniques. The device comprises a delivery system, a detection system and a data acquisition and control system. It was designed to be stable, miniaturized and easy-to-handle. The data collected was pre-processed and features and curve fitting parameters were extracted from the original response. A recursive feature selection method was applied to select the best features, and then a Support Vector Machine classifier was implemented to distinguish the eleven distinct VOCs. The results show that the followed methodology allowed the classification of all the VOCs tested with 94.6% (± 0.9%) accuracy.
电子鼻通常由对各类挥发性有机化合物(VOCs)具有不同选择性的传感器阵列组成。这些设备已应用于多个领域,包括环境保护、公共安全、食品饮料行业、化妆品以及临床诊断。这项工作表明,使用一种在VOCs存在时会改变其光学特性的单一气体传感生物材料,就有可能对来自不同化学类别的11种VOCs进行分类。为实现这一目标,对一种为新型气体传感生物材料量身定制的自制电子鼻进行了改进,并将其与强大的机器学习技术相结合。该设备包括一个输送系统、一个检测系统以及一个数据采集与控制系统。其设计旨在实现稳定、小型化且易于操作。对收集到的数据进行了预处理,并从原始响应中提取了特征和曲线拟合参数。应用递归特征选择方法来选择最佳特征,然后实施支持向量机分类器以区分这11种不同的VOCs。结果表明,所采用的方法能够以94.6%(±0.9%)的准确率对所有测试的VOCs进行分类。