Suppr超能文献

用于气体传感的鱼明胶基薄膜

Fish Gelatin-based Films for Gas Sensing.

作者信息

Moreira Inês Pimentel, Sato Laura, Alves Cláudia, Palma Susana, Roque Ana Cecília

机构信息

UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.

出版信息

Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2021 Feb;2021:32-39. doi: 10.5220/0010206200320039.

Abstract

Electronic noses (e-noses) mimic the complex biological olfactory system, usually including an array of gas sensors to act as the olfactory receptors and a trained computer with signal-processing and pattern recognition tools as the brain. In this work, a new stimuli-responsive material is shown, consisting of self-assembled droplets of liquid crystal and ionic liquid stabilised within a fish gelatin matrix. These materials change their opto/electrical properties upon contact with volatile organic compounds (VOCs). By using an in-house developed e-nose, these new gas-sensing films yield characteristic optical signals for VOCs from different chemical classes. A support vector machine classifier was implemented based on 12 features of the signals. The results show that the films are excellent identifying hydrocarbon VOCs (toluene, heptane and hexane) (95% accuracy) but lower performance was found to other VOCs, resulting in an overall 60.4% accuracy. Even though they are not reusable, these sustainable gas-sensing films are stable throughout time and reproducible, opening several opportunities for future optoelectronic devices and artificial olfaction systems.

摘要

电子鼻模仿复杂的生物嗅觉系统,通常包括一系列充当嗅觉感受器的气体传感器,以及一台配备信号处理和模式识别工具的经过训练的计算机作为“大脑”。在这项研究中,展示了一种新型的刺激响应材料,它由液晶自组装液滴和稳定在鱼明胶基质中的离子液体组成。这些材料在与挥发性有机化合物(VOCs)接触时会改变其光学/电学性质。通过使用自行开发的电子鼻,这些新型气敏薄膜对来自不同化学类别的VOCs产生特征性光学信号。基于信号的12个特征实现了支持向量机分类器。结果表明,这些薄膜在识别碳氢化合物VOCs(甲苯、庚烷和己烷)方面表现出色(准确率95%),但对其他VOCs的性能较低,总体准确率为60.4%。尽管它们不可重复使用,但这些可持续的气敏薄膜在整个时间内都是稳定的且可重现的,为未来的光电器件和人工嗅觉系统开辟了多个机会。

相似文献

1
Fish Gelatin-based Films for Gas Sensing.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2021 Feb;2021:32-39. doi: 10.5220/0010206200320039.
2
Effect of film thickness in gelatin hybrid gels for artificial olfaction.
Mater Today Bio. 2019 Mar 22;1:100002. doi: 10.1016/j.mtbio.2019.100002. eCollection 2019 Jan.
3
Design and Evolution of an Opto-electronic Device for VOCs Detection.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2018;1:48-55. doi: 10.5220/0006558100480055.
4
Sustainable plant polyesters as substrates for optical gas sensors.
Mater Today Bio. 2020 Oct 20;8:100083. doi: 10.1016/j.mtbio.2020.100083. eCollection 2020 Sep.
5
An Optimized E-nose for Efficient Volatile Sensing and Discrimination.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019;1:36-46. doi: 10.5220/0007390700360046.
7
Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes.
ACS Appl Mater Interfaces. 2022 Feb 2;14(4):6261-6273. doi: 10.1021/acsami.1c24721. Epub 2022 Jan 19.
8
Effect of Polymer Hydrophobicity in the Performance of Hybrid Gel Gas Sensors for E-Noses.
Sensors (Basel). 2023 Mar 28;23(7):3531. doi: 10.3390/s23073531.
9
Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials.
Adv Mater. 2022 Feb;34(8):e2107205. doi: 10.1002/adma.202107205. Epub 2022 Jan 9.
10
Tunable Gas Sensing Gels by Cooperative Assembly.
Adv Funct Mater. 2017 Jul 19;27(27). doi: 10.1002/adfm.201700803.

本文引用的文献

1
An Optimized E-nose for Efficient Volatile Sensing and Discrimination.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019;1:36-46. doi: 10.5220/0007390700360046.
2
Effect of film thickness in gelatin hybrid gels for artificial olfaction.
Mater Today Bio. 2019 Mar 22;1:100002. doi: 10.1016/j.mtbio.2019.100002. eCollection 2019 Jan.
3
Protein- and Peptide-Based Biosensors in Artificial Olfaction.
Trends Biotechnol. 2018 Dec;36(12):1244-1258. doi: 10.1016/j.tibtech.2018.07.004. Epub 2018 Sep 10.
4
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
5
Methods and approaches of utilizing ionic liquids as gas sensing materials.
RSC Adv. 2015;5(72):58371-58392. doi: 10.1039/c5ra06754e. Epub 2015 Jun 16.
6
Tunable Gas Sensing Gels by Cooperative Assembly.
Adv Funct Mater. 2017 Jul 19;27(27). doi: 10.1002/adfm.201700803.
7
Chemical and biological sensing using liquid crystals.
Liq Cryst Rev. 2013;1(1):29-51. doi: 10.1080/21680396.2013.769310.
8
Advances in artificial olfaction: sensors and applications.
Talanta. 2014 Jun;124:95-105. doi: 10.1016/j.talanta.2014.02.016. Epub 2014 Feb 25.
9
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
10
Electronic noses and tongues: applications for the food and pharmaceutical industries.
Sensors (Basel). 2011;11(5):4744-66. doi: 10.3390/s110504744. Epub 2011 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验