Suppr超能文献

CT影像组学特征可预测肺密度变化及肺气肿进展速率。

CT Radiomics Features Predict Change in Lung Density and Rate of Emphysema Progression.

作者信息

Saha Pratim, Bodduluri Sandeep, Nakhmani Arie, Chaudhary Muhammad F A, Amudala Puchakalaya Praneeth R, Sthanam Venkata, San Jose Estepar Raul, Reinhardt Joseph M, Zhang Chengzui, Bhatt Surya P

机构信息

The University of Alabama at Birmingham, Computer Science, Birmingham, Alabama, United States.

University of Alabama at Birmingham, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States.

出版信息

Ann Am Thorac Soc. 2024 Oct 15;22(1):83-92. doi: 10.1513/AnnalsATS.202401-009OC.

Abstract

Rationale Emphysema progression is heterogeneous. Predicting temporal changes in lung density and detecting rapid progressors may facilitate selection of individuals for targeted therapies. Objective To test whether computed tomography (CT) radiomics can be used to predict changes in lung density and detect rapid progressors. Methods We extracted radiomics features from inspiratory chest CT in 4,575 subjects with and without airflow obstruction at enrollment, who completed a follow-up visit at approximately 5 years. We quantified emphysema using adjusted lung density (ALD) and estimated emphysema progression as the annualized change in ALD (∆ALD/year) between visits. We categorized participants into rapid progressors (>1% ∆ALD/year) and stable disease (≤1% ∆ALD/year). A gradient boosting model was used (1) to predict ALD at 5-years and (2) to identify rapid progressors. Four models using demographics (base clinical model); CT density; radiomics; and combined features (clinical, radiomics, and CT density) were evaluated and tested. Results There were 1,773 (38.8%) rapid progressors. For predicting ALD at 5-years in the 20% held-out data, the base model explained 31% of the variance (adjusted R2 = 0.31) whereas R2 was 0.74 for the CT density model, 0.66 for the radiomics-only model, and 0.77 for the combined features model. For detecting rapid progressors, the base model (AUC = 0.57, 95%CI 0.53-0.61) was outperformed by the radiomics-only model (AUC = 0.73, 95%CI 0.69-0.76, ∆ =0.0003, p < 0.001) and the combined model (AUC = 0.74, 95%CI 0.71-0.77, ∆ = 0.0003, p < 0.001). Conclusions Parenchymal and airway radiomics features derived from inspiratory scans can be used to predict temporal changes in lung density and help identify rapid progressors.

摘要

原理 肺气肿进展具有异质性。预测肺密度的时间变化并检测快速进展者可能有助于选择接受靶向治疗的个体。目的 测试计算机断层扫描(CT)影像组学是否可用于预测肺密度变化并检测快速进展者。方法 我们从4575名在入组时有无气流受限的受试者的吸气胸部CT中提取影像组学特征,这些受试者在大约5年后完成了随访。我们使用调整后的肺密度(ALD)对肺气肿进行量化,并将肺气肿进展估计为两次随访之间ALD的年化变化(∆ALD/年)。我们将参与者分为快速进展者(>1%∆ALD/年)和疾病稳定者(≤1%∆ALD/年)。使用梯度提升模型(1)预测5年时的ALD,(2)识别快速进展者。评估并测试了四个模型,分别使用人口统计学数据(基础临床模型);CT密度;影像组学;以及联合特征(临床、影像组学和CT密度)。结果 有1773名(38.8%)快速进展者。对于在20%的留出数据中预测5年时的ALD,基础模型解释了31%的方差(调整后R2 = 0.31),而CT密度模型的R2为0.74,仅影像组学模型的R2为0.66,联合特征模型的R2为0.77。对于检测快速进展者,基础模型(AUC = 0.57,95%CI 0.53 - 0.61)的表现不如仅影像组学模型(AUC = 0.73,95%CI 0.69 - 0.76,∆ = 0.0003,p < 0.001)和联合模型(AUC = 0.74,95%CI 0.71 - 0.77,∆ = 0.0003,p < 0.001)。结论 从吸气扫描中获得的实质和气道影像组学特征可用于预测肺密度的时间变化并有助于识别快速进展者。

相似文献

3
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
7
Nutritional interventions for survivors of childhood cancer.儿童癌症幸存者的营养干预措施。
Cochrane Database Syst Rev. 2016 Aug 22;2016(8):CD009678. doi: 10.1002/14651858.CD009678.pub2.
8
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

4
Acute Exacerbations Are Associated with Progression of Emphysema.急性加重与肺气肿进展相关。
Ann Am Thorac Soc. 2022 Dec;19(12):2108-2111. doi: 10.1513/AnnalsATS.202112-1385RL.
9
Progression of Emphysema and Small Airways Disease in Cigarette Smokers.吸烟者肺气肿和小气道疾病的进展
Chronic Obstr Pulm Dis. 2021 Apr 27;8(2):198-212. doi: 10.15326/jcopdf.2020.0140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验