Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
Anal Chem. 2024 Oct 29;96(43):17280-17289. doi: 10.1021/acs.analchem.4c03558. Epub 2024 Oct 15.
Chiral film-based sensors show great promise for discriminating between enantiomers due to their miniaturization and low power consumption. However, their practical use is hindered by the trade-off between enantioselectivity and mass transfer capability, especially concerning biomacromolecules such as proteins. In this work, we present an effective and straightforward method for creating highly organized macropores within crystalline chiral metal-organic framework (CMOF) films. This approach harnesses the shaping influence of a polystyrene nanosphere template and the crystallization induced by the liquid dielectric barrier discharge plasma. The resultant highly ordered macro-microporous structures improve mass diffusion and access to chiral active sites in the hierarchical CMOF films. Coupled with their inherent chirality, strong fluorescence emission, high crystallinity, and exceptional stability, these attributes endow these CMOF films with enhanced sensing capabilities for chiral molecules. Particularly, the macro-microporous structure facilitates efficient protein recognition, overcoming a significant challenge encountered by MOFs due to protein dimensions surpassing MOF pore sizes. These films exhibit increased enantioselectivity, better limits of detection, and wider linear ranges compared with purely microporous CMOF films. This study thus provides a powerful synthetic approach for hierarchical CMOF films, addressing the limitations of traditional thin film sensors and opening an avenue for efficient chiral sensing of large biomacromolecules.
基于手性膜的传感器由于其小型化和低功耗的特点,在对映异构体的区分方面显示出巨大的应用潜力。然而,其实际应用受到对映选择性和传质能力之间的权衡限制,尤其是对于蛋白质等生物大分子。在这项工作中,我们提出了一种在结晶手性金属有机骨架(CMOF)薄膜内创建高度有序的大孔的有效且简单的方法。该方法利用聚苯乙烯纳米球模板的成型影响和液体介电阻挡放电等离子体的诱导结晶。所得的高度有序的大-微孔结构改善了质量扩散并增加了分级 CMOF 薄膜中手性活性位点的可及性。这些特性结合了其内在的手性、强荧光发射、高结晶度和卓越的稳定性,使这些 CMOF 薄膜具有增强的手性分子传感能力。特别是,大-微孔结构有利于有效的蛋白质识别,克服了由于蛋白质尺寸超过 MOF 孔径而导致的 MOF 面临的重大挑战。与纯微孔 CMOF 薄膜相比,这些薄膜表现出更高的对映选择性、更低的检测限和更宽的线性范围。因此,这项研究为分级 CMOF 薄膜提供了一种强大的合成方法,解决了传统薄膜传感器的局限性,并为大生物大分子的高效手性传感开辟了道路。