Modeling and Simulation Laboratory, Department of Physics, Government College University, Faisalabad (GCUF), Faisalabad 38040, Pakistan.
Department of Medical Physics, Punjab Institute of Nuclear Medicine (PINUM) Cancer Hospital, Faisalabad, Pakistan.
Radiat Res. 2024 Nov 1;202(5):795-806. doi: 10.1667/RADE-23-00199.1.
The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.
金纳米颗粒(GNPs)的放射增敏特性已在使用 TOPAS-nBio 的单能质子束辐射的单细胞中进行了研究,TOPAS-nBio 是 TOPAS 的一个高级工具包。研究了对单链断裂(SSB)的直接和间接影响,并计算了它们的双链断裂(DSB)。在不同条件下,如颗粒大小和 GNPs 的浓度、它们的生物分布和相关质子能量下,对具有详细 DNA 结构的单个球形细胞相互作用进行了建模和模拟。使用双物理方法模拟了质子、悬浮水和 GNPs 之间的物理相互作用,同时在化学过程中考虑了水辐射分解和 OH 自由基之间的相互作用,以节省计算时间。目前的模拟涉及用 1 Gy 的剂量辐照细胞几何形状。在所研究的质子能量范围为 5-50 MeV 时,所有尺寸为 6-50nm 的 GNPs 的 DSB 范围(Gy-1 Gbp-1)为 2.1±0.09 至 21.74±0.4。无论质子能量和 GNPs 大小如何,计算结果表明,间接和混合 DSBs 的贡献在所有模拟类型中始终高于直接 DSBs。间接 DSBs 的新模拟结果表明百分比增加,而在大多数情况下,与没有 GNPs 的情况相比,直接和混合 DSBs 无法增加。间接 DSBs 在 30nm GNPs 大小为 30 MeV 质子能量时提供了最高的增强因子 1.89,而直接和混合 DSBs 则显示出略有增强。研究表明,使用 GNPs 增加了间接 DNA DSBs,而混合 DSBs 仅显示出轻微的增强,直接 DNA DSBs 则没有增强。在研究 DNA 损伤时,考虑其他机制如 DNA 损伤修复是很重要的。