Suppr超能文献

使用纳米级细胞模型结合基于分形的DNA模型对金纳米颗粒介导的放射增敏效应进行蒙特卡罗研究。

Monte Carlo study of gold nanoparticle-mediated radiosensitization effects using nanoscale cell model combined with fractal-based DNA model.

作者信息

Kaphle Amrit, Jayarathna Sandun, Krishnan Sunil, Cho Sang Hyun

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA.

出版信息

Med Phys. 2025 Jun;52(6):4605-4620. doi: 10.1002/mp.17676. Epub 2025 Feb 10.

Abstract

BACKGROUND

Gold nanoparticles (GNPs) are promising radiosensitizers in radiation therapy, yet the exact mechanisms behind their effectiveness remain not fully understood. Monte Carlo (MC) simulations have been used to study extra energy deposition and increased DNA damage by the secondary electrons from intracellularly present GNPs, which are believed to be the key physical mechanisms responsible for the radiosensitization effects observed in many radiobiological studies. However, discrepancies between experimental results and computational predictions persist. While often attributed to purely biological effects, such discrepancies, from a physical modeling point of view, can also be due to the use of MC models constructed with simplified cellular/DNA geometries and unrealistic GNP distributions. To address this challenge, higher-resolution nanoscale models with realistic GNP distributions and detailed cellular/DNA structures are needed. In principle, computational results from such nanoscale models can be not only more accurate but also directly correlated with experimental results for biological outcome modeling.

PURPOSE

The main purpose of this MC study was to investigate the potential increase in radiation-induced DNA damage due to internalized GNPs by using a nanoscale cell model including realistic GNP distributions and detailed cellular/DNA structures.

METHODS

Two high-resolution nanoscale cellular geometry models, featuring the nucleus filled with fractal-patterned DNA fibers, were constructed from transmission electron microscopy (TEM) images of GNP-laden human colorectal tumor cells. These models were used to simulate the initial yield of single- and double-strand breaks (SSBs and DSBs) of DNA under orthovoltage (250 kVp) and megavoltage (6 MV) photon beam irradiation. In-depth Geant4 MC simulations were conducted to assess radiation-induced effects due to intracellular GNP presence and absence, focusing on the computation of SSBs/DSBs and their causative mechanisms - direct or indirect effects of ionizing radiation. Penelope and Geant4-DNA for Gold (G4_DNA_Au) physics models were employed for GNPs, and the difference between those two physics models were also evaluated.

RESULTS

The simulation results revealed a notable enhancement in the nucleus dose and DNA damage due to intracellular GNP presence, with maximum dose enhancements observed at 4.24% and 4.34% for 250 kVp, and 3.04% and 3.22% for 6 MV irradiation using the Penelope and G4_DNA_Au physics models, respectively. Crucially, this study found that indirect yields of both SSB and DSB were significantly higher than their direct counterparts, emphasizing the dominance of indirect DNA damage mechanisms. SSB enhancements were recorded between 2.36% and 3.46%, while DSB enhancements were more significant, ranging from 7.36% to 10.33%, across various scenarios and photon energies under the G4_DNA_Au physics model. The 250 kVp beam showed more SSB enhancement, whereas the 6 MV beam yielded more DSB enhancement.

CONCLUSION

With a realistic fractal-based chromatin fiber arrangement of DNA within the nucleus, the currently developed TEM-based cellular geometry model enabled the unprecedented investigation of radiation-induced DNA damage in a single GNP-laden cell using track structure Geant4 MC simulations. The modeling approaches and findings from this study significantly enhance our ability and knowledge to conduct computational investigations of GNP-mediated radiosensitization, possibly leading to the development of a predictive biological outcome model with minimal empiricism.

摘要

背景

金纳米颗粒(GNPs)在放射治疗中是很有前景的放射增敏剂,但其有效性背后的确切机制仍未完全明了。蒙特卡罗(MC)模拟已被用于研究细胞内存在的金纳米颗粒产生的二次电子导致的额外能量沉积和DNA损伤增加,这些二次电子被认为是许多放射生物学研究中观察到的放射增敏效应的关键物理机制。然而,实验结果与计算预测之间的差异仍然存在。虽然这些差异通常归因于纯粹的生物学效应,但从物理建模的角度来看,也可能是由于使用了具有简化细胞/DNA几何结构和不切实际的金纳米颗粒分布构建的MC模型。为应对这一挑战,需要具有现实金纳米颗粒分布和详细细胞/DNA结构的高分辨率纳米尺度模型。原则上,这种纳米尺度模型的计算结果不仅可以更准确,而且可以直接与生物学结果建模的实验结果相关联。

目的

本MC研究的主要目的是通过使用包含现实金纳米颗粒分布和详细细胞/DNA结构的纳米尺度细胞模型,研究内化的金纳米颗粒导致的辐射诱导DNA损伤的潜在增加。

方法

从载有金纳米颗粒(GNP)的人结肠直肠肿瘤细胞的透射电子显微镜(TEM)图像构建了两个高分辨率纳米尺度细胞几何模型,其细胞核填充有分形图案的DNA纤维。这些模型用于模拟在正电压(250 kVp)和兆伏电压(6 MV)光子束照射下DNA的单链和双链断裂(SSB和DSB)的初始产额。进行了深入的Geant4 MC模拟,以评估细胞内金纳米颗粒存在和不存在时的辐射诱导效应,重点是计算SSB/DSB及其致病机制——电离辐射的直接或间接效应。金纳米颗粒采用Penelope和Geant4-DNA for Gold(G4_DNA_Au)物理模型,还评估了这两种物理模型之间的差异。

结果

模拟结果显示,由于细胞内金纳米颗粒的存在,细胞核剂量和DNA损伤显著增强,使用Penelope和G4_DNA_Au物理模型时,250 kVp照射下最大剂量增强分别为4.24%和4.34%,6 MV照射下分别为3.04%和3.22%。至关重要的是,本研究发现,SSB和DSB的间接产额均显著高于其直接产额,强调了间接DNA损伤机制的主导地位。在G4_DNA_Au物理模型下的各种情况和光子能量中,SSB增强记录在2.36%至3.46%之间,而DSB增强更为显著,范围为7.36%至10.33%。250 kVp束显示出更多的SSB增强,而6 MV束产生更多的DSB增强。

结论

通过在细胞核内采用基于现实分形的染色质纤维DNA排列,当前开发的基于TEM的细胞几何模型能够使用径迹结构Geant4 MC模拟对单个载有金纳米颗粒的细胞中的辐射诱导DNA损伤进行前所未有的研究。本研究的建模方法和结果显著增强了我们对金纳米颗粒介导的放射增敏进行计算研究的能力和知识,可能导致开发出具有最小经验主义的预测性生物学结果模型。

相似文献

7
Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
Phys Med Biol. 2013 Nov 21;58(22):7961-77. doi: 10.1088/0031-9155/58/22/7961. Epub 2013 Oct 30.
10
Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models.
Phys Med Biol. 2020 Nov 17;65(22):225017. doi: 10.1088/1361-6560/abb7c2.

本文引用的文献

1
Simulation of DNA damage using Geant4-DNA: an overview of the "molecularDNA" example application.
Precis Radiat Oncol. 2023 Feb 13;7(1):4-14. doi: 10.1002/pro6.1186. eCollection 2023 Mar.
7
A Geant4-DNA Evaluation of Radiation-Induced DNA Damage on a Human Fibroblast.
Cancers (Basel). 2021 Sep 30;13(19):4940. doi: 10.3390/cancers13194940.
10
Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models.
Phys Med Biol. 2020 Nov 17;65(22):225017. doi: 10.1088/1361-6560/abb7c2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验