Suppr超能文献

人工智能胸部X光片分诊系统的真实世界评估:一项前瞻性临床研究。

Real-World evaluation of an AI triaging system for chest X-rays: A prospective clinical study.

作者信息

Sridharan Srinath, Seah Xin Hui Alicia, Venkataraman Narayan, Sivanath Tirukonda Prasanna, Pratab Jeyaratnam Ram, John Sindhu, Suresh Babu Saraswathy, Liew Perry, Francis Joe, Koh Tzan Tsai, Kang Min Wong, Min Liong Goh, Liew Jin Yee Charlene

机构信息

Data Management and Informatics, Changi General Hospital, Singapore.

Data Management and Informatics, Changi General Hospital, Singapore; Singapore University of Technology and Design, Singapore.

出版信息

Eur J Radiol. 2024 Dec;181:111783. doi: 10.1016/j.ejrad.2024.111783. Epub 2024 Oct 10.

Abstract

Chest X-rays (CXRs) are crucial for diagnosing and managing lung conditions. While CXR is a common and cost-effective diagnostic tool, interpreting the high volume of CXRs is challenging due to workforce limitations. Artificial intelligence (AI) offers promise in enhancing efficiency and accuracy. However, real-world applicability and generalizability across diverse patient cohorts remain areas of concerns. In our study, the LUNIT INSIGHT CXR Triage software was evaluated in a diverse patient cohort. Forty-three radiologists, blinded to AI results, assessed CXRs categorized into normal, non-urgent, and urgent using a 3-tier classification system. Performance metrics and turnaround times were analyzed. The AI system demonstrated sensitivity of 89% for normal CXRs, specificity of 93%, PPV of 83%, and NPV of 95%, with an F1 score of 0.86 and an AUC of 0.91. For non-urgent CXRs, sensitivity and specificity were 93% and 91%, with PPV and NPV at 94% and 89%, respectively, and an F1 score of 0.94 and an AUC of 0.92. In the urgent category, sensitivity was 82%, specificity 99%, PPV 90%, and NPV 98%. Subgroup analysis revealed consistently high accuracy across various age groups (Young, Adult, Senior), genders, and ethnicities (Chinese, Malay, Indian, Others), with sensitivity, specificity, and AUC consistently above 84%. The AI system also significantly reduced turnaround times across all subgroups, indicating its robust performance and generalizability in diverse healthcare settings.

摘要

胸部X光(CXR)对于肺部疾病的诊断和管理至关重要。虽然CXR是一种常见且经济高效的诊断工具,但由于人力限制,解读大量的CXR具有挑战性。人工智能(AI)有望提高效率和准确性。然而,在不同患者群体中的实际适用性和可推广性仍然是令人担忧的领域。在我们的研究中,对LUNIT INSIGHT CXR Triage软件在不同患者群体中进行了评估。43名对AI结果不知情的放射科医生,使用三级分类系统对分类为正常、非紧急和紧急的CXR进行评估。分析了性能指标和周转时间。AI系统对正常CXR的敏感性为89%,特异性为93%,阳性预测值为83%,阴性预测值为95%,F1评分为0.86,曲线下面积(AUC)为0.91。对于非紧急CXR,敏感性和特异性分别为93%和91%,阳性预测值和阴性预测值分别为94%和89%,F1评分为0.94,AUC为0.92。在紧急类别中,敏感性为82%,特异性为99%,阳性预测值为90%,阴性预测值为98%。亚组分析显示,在各个年龄组(青年、成人、老年)、性别和种族(中国人、马来人、印度人、其他)中,准确性始终很高,敏感性、特异性和AUC始终高于84%。AI系统还显著缩短了所有亚组的周转时间,表明其在不同医疗环境中的强大性能和可推广性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验