Suppr超能文献

居家医疗服务中放射科医生、内科专家与人工智能软件对胸部X光片诊断的一致性:前瞻性观察研究

Consensus Between Radiologists, Specialists in Internal Medicine, and AI Software on Chest X-Rays in a Hospital-at-Home Service: Prospective Observational Study.

作者信息

Grossbard Eitan, Marziano Yehonatan, Sharabi Adam, Abutbul Eliyahu, Berman Aya, Kassif-Lerner Reut, Barkai Galia, Hakim Hila, Segal Gad

机构信息

Faculty of Medicine, University of Nicosia, Nicosia, Cyprus.

Dan Petah-Tikvah District at Clalit Health Services, Petah-Tikvah, Israel.

出版信息

JMIR Form Res. 2024 Dec 24;8:e55916. doi: 10.2196/55916.

Abstract

BACKGROUND

Home hospitalization is a care modality growing in popularity worldwide. Telemedicine-driven hospital-at-home (HAH) services could replace traditional hospital departments for selected patients. Chest x-rays typically serve as a key diagnostic tool in such cases.

OBJECTIVE

The implementation, analysis, and clinical assimilation of chest x-rays into an HAH service has not been described yet. Our objective is to introduce this essential information to the realm of HAH services for the first time worldwide.

METHODS

The study involved a prospective follow-up, description, and analysis of the HAH patient population who underwent chest x-rays at home. A comparative analysis was performed to evaluate the level of agreement among three interpretation modalities: a radiologist, a specialist in internal medicine, and a designated artificial intelligence (AI) algorithm.

RESULTS

Between February 2021 and May 2023, 300 chest radiographs were performed at the homes of 260 patients, with the median age being 78 (IQR 65-87) years. The most frequent underlying morbidity was cardiovascular disease (n=185, 71.2%). Of the x-rays, 286 (95.3%) were interpreted by a specialist in internal medicine, 29 (9.7%) by a specialized radiologist, and 95 (31.7%) by the AI software. The overall raw agreement level among these three modalities exceeded 90%. The consensus level evaluated using the Cohen κ coefficient showed substantial agreement (κ=0.65) and moderate agreement (κ=0.49) between the specialist in internal medicine and the radiologist, and between the specialist in internal medicine and the AI software, respectively.

CONCLUSIONS

Chest x-rays play a crucial role in the HAH setting. Rapid and reliable interpretation of these x-rays is essential for determining whether a patient requires transfer back to in-hospital surveillance. Our comparative results showed that interpretation by an experienced specialist in internal medicine demonstrates a significant level of consensus with that of the radiologists. However, AI algorithm-based interpretation needs to be further developed and revalidated prior to clinical applications.

摘要

背景

居家住院是一种在全球范围内日益流行的护理模式。远程医疗驱动的居家医院(HAH)服务可以替代传统医院科室为特定患者提供服务。胸部X光片通常是此类病例的关键诊断工具。

目的

尚未有关于将胸部X光片应用于HAH服务的实施、分析及临床整合的相关描述。我们的目标是首次在全球范围内将这一重要信息引入HAH服务领域。

方法

该研究对在家中接受胸部X光检查的HAH患者群体进行了前瞻性随访、描述和分析。进行了一项比较分析,以评估三种解读方式之间的一致性水平:放射科医生、内科专家和指定的人工智能(AI)算法。

结果

在2021年2月至2023年5月期间,对260例患者在家中进行了300次胸部X光检查,中位年龄为78岁(四分位间距65 - 87岁)。最常见的基础疾病是心血管疾病(n = 185,71.2%)。在这些X光片中,286例(95.3%)由内科专家解读,29例(9.7%)由专业放射科医生解读,95例(31.7%)由AI软件解读。这三种方式之间的总体原始一致性水平超过90%。使用Cohen κ系数评估的一致性水平显示,内科专家与放射科医生之间以及内科专家与AI软件之间分别呈现高度一致性(κ = 0.65)和中度一致性(κ = 0.49)。

结论

胸部X光片在HAH环境中起着关键作用。对这些X光片进行快速可靠的解读对于确定患者是否需要转回医院进行监测至关重要。我们的比较结果表明,经验丰富的内科专家的解读与放射科医生的解读具有显著的一致性水平。然而,基于AI算法的解读在临床应用前需要进一步开发和重新验证。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验