Xie Xuan, Zhang Xiaodong
Shandong University, School of Environmental Science and Engineering, China.
Shandong University, School of Environmental Science and Engineering, China.
J Environ Manage. 2024 Nov;370:122724. doi: 10.1016/j.jenvman.2024.122724. Epub 2024 Oct 11.
Effective reflection of the spatio-temporal characteristics of time series is crucial in development of time-series-based surrogate models for hydrologic systems, especially in coastal areas. In this study, a deep learning-based surrogate modeling framework, named STA-GRU, is proposed to predict groundwater levels accurately and efficiently through incorporation of spatio-temporal attention mechanism of multivariate time series and gated recurrent neural network. Firstly, a three-dimensional groundwater flow model is developed based on GMS-MODFLOW and used to generate groundwater levels as input datasets for the STA-GRU framework. The spatio-temporal sequence window is then reconstructed, and the spatio-temporal attention mechanism is employed to assign different weights to the time series of each groundwater well and the time step of a single time series. The gated recurrent unit (GRU) is finally introduced to address the spatial and temporal characteristics of groundwater levels. The comparison between the ablation experiment and the baseline model demonstrates that the framework is efficient in reducing the conflict of non-target variables by capturing the spatiotemporal dependence of variables. The STA-GRU modeling framework developed in this study can effectively extract the spatio-temporal characteristics of the groundwater table and improve model performance. In addition, compared with the finite difference method, the STA-GRU surrogate model saves a lot of calculation and time costs to achieve accurate prediction of complex hydrological sequences. The proposed STA-GRU framework has provided an effective method for predicting groundwater levels in coastal areas.
有效反映时间序列的时空特征对于基于时间序列的水文系统替代模型的开发至关重要,特别是在沿海地区。在本研究中,提出了一种基于深度学习的替代建模框架,名为STA-GRU,通过结合多元时间序列的时空注意力机制和门控循环神经网络,准确有效地预测地下水位。首先,基于GMS-MODFLOW开发了三维地下水流模型,并将其生成的地下水位用作STA-GRU框架的输入数据集。然后重建时空序列窗口,并采用时空注意力机制为每个地下水井的时间序列和单个时间序列的时间步长分配不同的权重。最后引入门控循环单元(GRU)来处理地下水位的时空特征。消融实验与基线模型之间的比较表明,该框架通过捕捉变量的时空依赖性,有效地减少了非目标变量的冲突。本研究开发的STA-GRU建模框架能够有效提取地下水位的时空特征,提高模型性能。此外,与有限差分法相比,STA-GRU替代模型节省了大量的计算和时间成本,实现了对复杂水文序列的准确预测。所提出的STA-GRU框架为沿海地区地下水位预测提供了一种有效方法。