Antonelli Giulio, Libanio Diogo, De Groof Albert Jeroen, van der Sommen Fons, Mascagni Pietro, Sinonquel Pieter, Abdelrahim Mohamed, Ahmad Omer, Berzin Tyler, Bhandari Pradeep, Bretthauer Michael, Coimbra Miguel, Dekker Evelien, Ebigbo Alanna, Eelbode Tom, Frazzoni Leonardo, Gross Seth A, Ishihara Ryu, Kaminski Michal Filip, Messmann Helmut, Mori Yuichi, Padoy Nicolas, Parasa Sravanthi, Pilonis Nastazja Dagny, Renna Francesco, Repici Alessandro, Simsek Cem, Spadaccini Marco, Bisschops Raf, Bergman Jacques J G H M, Hassan Cesare, Dinis Ribeiro Mario
Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, Rome, Italy.
MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal.
Gut. 2024 Dec 10;74(1):153-161. doi: 10.1136/gutjnl-2024-332820.
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy.The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted.Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18).The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.
人工智能(AI)在提高胃肠(GI)内镜检查质量方面具有巨大潜力,但由于缺乏确保通用性的严格标准化和开发方法,AI在临床实践中的应用受到阻碍。诊断性内镜检查中临床前AI研究质量评估(QUAIDE)解释与清单的目的是为GI内镜检查中临床前AI研究的标准化设计和报告制定建议。这些建议是基于与32名内镜医师和计算机科学家组成的国际多学科专家小组的正式共识方法制定的。采用德尔菲法就各项声明达成共识,预定的一致同意阈值为80%。最多允许进行三轮投票。就18项关键建议达成了共识,涵盖6个关键领域:数据采集与标注(6项声明)、结果报告(3项声明)、实验设置与算法架构(4项声明)以及结果呈现与解释(5项声明)。QUAIDE就如何正确设计(1. 方法,声明1 - 14)、呈现结果(2. 结果,声明15 - 16)以及整合和解释所获得的结果(3. 讨论,声明17 - 18)提供了建议。QUAIDE框架为参与GI内镜检查AI临床前研究的作者、读者、编辑和审稿人提供了实用指导,旨在改进设计和报告,从而促进研究标准化并加速AI创新转化为临床实践。