Suppr超能文献

急诊与创伤放射学中的人工智能:ASER人工智能/机器学习专家小组关于研究指南、实践及优先事项的德尔菲共识声明

Artificial intelligence in emergency and trauma radiology: ASER AI/ML expert panel Delphi consensus statement on research guidelines, practices, and priorities.

作者信息

Dreizin David, Khatri Garvit, Staziaki Pedro V, Buch Karen, Unberath Mathias, Mohammed Mohammed, Sodickson Aaron, Khurana Bharti, Agrawal Anjali, Spann James Stephen, Beckmann Nicholas, DelProposto Zachary, LeBedis Christina A, Davis Melissa, Dickerson Gabrielle, Lev Michael

机构信息

Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.

Abdominal Imaging, Department of Radiology, University of Colorado, Denver, CO, USA.

出版信息

Emerg Radiol. 2025 Apr;32(2):155-172. doi: 10.1007/s10140-024-02306-1. Epub 2024 Dec 23.

Abstract

BACKGROUND

Emergency/trauma radiology artificial intelligence (AI) is maturing along all stages of technology readiness, with research and development (R&D) ranging from data curation and algorithm development to post-market monitoring and retraining.

PURPOSE

To develop an expert consensus document on best research practices and methodological priorities for emergency/trauma radiology AI.

METHODS

A Delphi consensus exercise was conducted by the ASER AI/ML expert panel between 2022-2024. In phase 1, a steering committee (7 panelists) established key themes- curation; validity; human factors; workflow; barriers; future avenues; and ethics- and generated an edited, collated long-list of statements. In phase 2, two Delphi rounds using anonymous RAND/UCLA Likert grading were conducted with web-based data capture (round 1) and a bespoke excel document with literature hyperlinks (round 2). Between rounds, editing and knowledge synthesis helped maximize consensus. Statements reaching ≥80% agreement were included in the final document.

RESULTS

Delphi rounds 1 and 2 consisted of 81 and 78 items, respectively.18/21 expert panelists (86%) responded to round 1, and 15 to round 2 (17% drop-out). Consensus was reached for 65 statements. Observations were summarized and contextualized. Statements with unanimous consensus centered around transparent methodologic reporting; testing for generalizability and robustness with external data; and benchmarking performance with appropriate metrics and baselines. A manuscript draft was circulated to panelists for editing and final approval.

CONCLUSIONS

The document is meant as a framework to foster best-practices and further discussion among researchers working on various aspects of emergency and trauma radiology AI.

摘要

背景

急诊/创伤放射学人工智能(AI)正在技术准备的各个阶段走向成熟,其研发范围涵盖从数据管理和算法开发到上市后监测及再培训。

目的

制定一份关于急诊/创伤放射学AI最佳研究实践和方法学重点的专家共识文件。

方法

美国急诊放射学会AI/机器学习专家小组在2022年至2024年期间开展了德尔菲共识活动。在第一阶段,一个指导委员会(7名小组成员)确定了关键主题——数据管理;有效性;人为因素;工作流程;障碍;未来方向;以及伦理——并生成了一份经过编辑、整理的陈述长清单。在第二阶段,进行了两轮德尔菲调查,采用匿名的兰德/加州大学洛杉矶分校李克特评分法,通过基于网络的数据采集(第一轮)和带有文献超链接的定制Excel文档(第二轮)进行。两轮调查之间,编辑和知识综合有助于最大限度地达成共识。最终文件纳入了达成≥80%共识的陈述。

结果

第一轮和第二轮德尔菲调查分别包含81项和78项。18/21名专家小组成员(86%)回复了第一轮,15名回复了第二轮(17%退出)。就65项陈述达成了共识。对意见进行了总结并结合背景情况进行了阐述。达成一致共识的陈述集中在透明的方法学报告;使用外部数据进行普遍性和稳健性测试;以及用适当的指标和基线对性能进行基准测试。一份手稿草稿分发给小组成员进行编辑和最终批准。

结论

该文件旨在作为一个框架,促进从事急诊和创伤放射学AI各个方面研究的人员之间的最佳实践和进一步讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验