Suppr超能文献

基于CMIP6模型对伊朗气温和降水的评估及多模型平均法

Assessment of CMIP6 models and multi-model averaging for temperature and precipitation over Iran.

作者信息

Azad Narges, Ahmadi Azadeh

机构信息

Faculty of Civil, Water and Environmental Engineering, Shadid Beheshti University, Tehran, Iran.

出版信息

Sci Rep. 2024 Oct 15;14(1):24165. doi: 10.1038/s41598-024-74789-4.

Abstract

In this study, the performances of 40 Coupled Model Intercomparison Project Phase 6 are evaluated against observational data at synoptic stations in Iran using various evaluation criteria. The results reveal diverse model accuracy across different climate conditions and criteria, emphasizing particularly notable disparities in the nonstationarity R criterion compared to others. Although according to the ranking of the raw and bias-corrected outputs of CMIP6 GCMs for Iran, the NorESM2-MM, AWI-ESM-1-1-LR, and MPI-ESM1-2-LR models are consistently among the top six ranked models for precipitation in both raw and corrected outputs. For temperature, MPI-ESM1-2-LR, TaiESM1, INM-CM4-8, and IITM-ESM are consistently among the top six models for both the raw and bias-corrected outputs of CMIP6 GCMs. The Bias correction methods, including quantile mapping and linear scaling, integrated with Bayesian model averaging, were applied. While quantile mapping demonstrates superior performance and less disparity than linear scaling, it proves ineffective for correcting biases at stations with bias nonstationarity over time. The RMSE for monthly precipitation ranges from almost 0 to 200 mm, with a large RMSE value related to the high precipitation stations, and the monthly temperature exhibits a range of 0 to 4 °C. The use of a multi-model ensemble improves accuracy compared to individual models, resulting in a reduction in the differences between the minimum and maximum RMSE values from 178.6 to 91.0. Additionally, the range for mean absolute error decreases from 126.9 to 93.3, and the difference in the correlation coefficient narrows from 0.9 to 0.42. Averaging models after bias correction prevents significant fluctuations while maintaining higher accuracy, in contrast to the second method, which involves bias-correcting models after averaging.

摘要

在本研究中,使用各种评估标准,针对伊朗气象站的观测数据,对40个耦合模式比较计划第六阶段(CMIP6)模式的性能进行了评估。结果表明,在不同气候条件和标准下,各模式的准确性存在差异,特别是与其他标准相比,非平稳性R标准的差异尤为显著。根据CMIP6全球气候模式(GCMs)对伊朗原始和偏差校正输出的排名,挪威地球系统模型2-中等复杂度版本(NorESM2-MM)、阿尔弗雷德韦格纳研究所地球系统模型1-1-低分辨率版本(AWI-ESM-1-1-LR)和马克斯普朗克研究所地球系统模型1-2-低分辨率版本(MPI-ESM1-2-LR)在原始和校正输出的降水方面一直位列前六。对于温度,MPI-ESM1-2-LR、台湾地球系统模型1(TaiESM1)、俄罗斯科学院数值数学研究所气候模式4-8版本(INM-CM4-8)和印度理工学院地球系统模型(IITM-ESM)在CMIP6 GCMs的原始和偏差校正输出中均一直位列前六。应用了包括分位数映射和线性缩放在内的偏差校正方法,并结合贝叶斯模型平均法。虽然分位数映射表现出比线性缩放更好的性能和更小的差异,但对于校正随时间存在偏差非平稳性的站点的偏差无效。月降水量的均方根误差(RMSE)范围从几乎0到200毫米,较大的RMSE值与高降水量站点相关,月温度范围为0到4摄氏度。与单个模式相比,使用多模式集合提高了准确性,使得最小和最大RMSE值之间的差异从178.6减小到91.0。此外,平均绝对误差范围从126.9减小到93.3,相关系数差异从0.9缩小到0.42。与第二种方法(即在平均后对模式进行偏差校正)相比,偏差校正后对模式进行平均可防止显著波动,同时保持更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d3/11480097/25a1557bea24/41598_2024_74789_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验