Department of Economics and Institute for Policy Research, Northwestern University, Evanston, IL 60208;
Private address, Berkeley, CA 94709.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2022886118.
Numerical simulations of the global climate system provide inputs to integrated assessment modeling for estimating the impacts of greenhouse gas mitigation and other policies to address global climate change. While essential tools for this purpose, computational climate models are subject to considerable uncertainty, including intermodel "structural" uncertainty. Structural uncertainty analysis has emphasized simple or weighted averaging of the outputs of multimodel ensembles, sometimes with subjective Bayesian assignment of probabilities across models. However, choosing appropriate weights is problematic. To use climate simulations in integrated assessment, we propose, instead, framing climate model uncertainty as a problem of partial identification, or "deep" uncertainty. This terminology refers to situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical sense. We propose the min-max regret (MMR) decision criterion to account for deep climate uncertainty in integrated assessment without weighting climate model forecasts. We develop a theoretical framework for cost-benefit analysis of climate policy based on MMR, and apply it computationally with a simple integrated assessment model. We suggest avenues for further research.
全球气候系统的数值模拟为综合评估模型提供了输入,以估计温室气体减排和其他应对全球气候变化政策的影响。虽然这些计算气候模型是实现这一目标的重要工具,但它们存在相当大的不确定性,包括模型间的“结构”不确定性。结构不确定性分析强调了多模型集合输出的简单或加权平均,有时在模型之间进行主观贝叶斯概率分配。然而,选择适当的权重是有问题的。为了在综合评估中使用气候模拟,我们建议将气候模型不确定性视为部分识别或“深度”不确定性的问题。这个术语指的是在这种情况下,控制一个系统的基本机制、动态或规律并不完全为人所知,即使在没有统计意义上的数据限制的情况下,也不能可靠地确定地建模。我们提出最小-最大遗憾 (MMR) 决策准则来在不加权气候模型预测的情况下,在综合评估中考虑深度气候不确定性。我们基于 MMR 为气候政策的成本效益分析开发了一个理论框架,并通过一个简单的综合评估模型进行了计算应用。我们提出了进一步研究的途径。