Suppr超能文献

解决气候建模和政策分析中的部分识别问题。

Addressing partial identification in climate modeling and policy analysis.

机构信息

Department of Economics and Institute for Policy Research, Northwestern University, Evanston, IL 60208;

Private address, Berkeley, CA 94709.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2022886118.

Abstract

Numerical simulations of the global climate system provide inputs to integrated assessment modeling for estimating the impacts of greenhouse gas mitigation and other policies to address global climate change. While essential tools for this purpose, computational climate models are subject to considerable uncertainty, including intermodel "structural" uncertainty. Structural uncertainty analysis has emphasized simple or weighted averaging of the outputs of multimodel ensembles, sometimes with subjective Bayesian assignment of probabilities across models. However, choosing appropriate weights is problematic. To use climate simulations in integrated assessment, we propose, instead, framing climate model uncertainty as a problem of partial identification, or "deep" uncertainty. This terminology refers to situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical sense. We propose the min-max regret (MMR) decision criterion to account for deep climate uncertainty in integrated assessment without weighting climate model forecasts. We develop a theoretical framework for cost-benefit analysis of climate policy based on MMR, and apply it computationally with a simple integrated assessment model. We suggest avenues for further research.

摘要

全球气候系统的数值模拟为综合评估模型提供了输入,以估计温室气体减排和其他应对全球气候变化政策的影响。虽然这些计算气候模型是实现这一目标的重要工具,但它们存在相当大的不确定性,包括模型间的“结构”不确定性。结构不确定性分析强调了多模型集合输出的简单或加权平均,有时在模型之间进行主观贝叶斯概率分配。然而,选择适当的权重是有问题的。为了在综合评估中使用气候模拟,我们建议将气候模型不确定性视为部分识别或“深度”不确定性的问题。这个术语指的是在这种情况下,控制一个系统的基本机制、动态或规律并不完全为人所知,即使在没有统计意义上的数据限制的情况下,也不能可靠地确定地建模。我们提出最小-最大遗憾 (MMR) 决策准则来在不加权气候模型预测的情况下,在综合评估中考虑深度气候不确定性。我们基于 MMR 为气候政策的成本效益分析开发了一个理论框架,并通过一个简单的综合评估模型进行了计算应用。我们提出了进一步研究的途径。

相似文献

6
The Irrelevance of the Risk-Uncertainty Distinction.风险不确定性之分无关紧要。
Sci Eng Ethics. 2017 Oct;23(5):1387-1407. doi: 10.1007/s11948-017-9919-x. Epub 2017 Jun 8.
9
Model confirmation in climate economics.气候经济学中的模型验证。
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8675-80. doi: 10.1073/pnas.1604121113. Epub 2016 Jul 18.
10

本文引用的文献

1
Reducing uncertainties in climate models.减少气候模型中的不确定性。
Science. 2018 Jul 27;361(6400):326-327. doi: 10.1126/science.aau1864.
3
Sufficient trial size to inform clinical practice.有足够的试验规模为临床实践提供依据。
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10518-23. doi: 10.1073/pnas.1612174113. Epub 2016 Sep 6.
4
Vaccination with partial knowledge of external effectiveness.接种疫苗时对外在有效性的部分了解。
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3953-60. doi: 10.1073/pnas.0915009107. Epub 2010 Feb 16.
7
8
The use of the multi-model ensemble in probabilistic climate projections.多模型集合在概率性气候预测中的应用。
Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):2053-75. doi: 10.1098/rsta.2007.2076.
9
Irreducible imprecision in atmospheric and oceanic simulations.大气和海洋模拟中不可简化的不精确性。
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8709-13. doi: 10.1073/pnas.0702971104. Epub 2007 May 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验