Suppr超能文献

小分子药物发现中机器学习的未来将由数据驱动。

The future of machine learning for small-molecule drug discovery will be driven by data.

机构信息

Department of Statistics, University of Oxford, Oxford, UK.

LifeArc, Stevenage, UK.

出版信息

Nat Comput Sci. 2024 Oct;4(10):735-743. doi: 10.1038/s43588-024-00699-0. Epub 2024 Oct 15.

Abstract

Many studies have prophesied that the integration of machine learning techniques into small-molecule therapeutics development will help to deliver a true leap forward in drug discovery. However, increasingly advanced algorithms and novel architectures have not always yielded substantial improvements in results. In this Perspective, we propose that a greater focus on the data for training and benchmarking these models is more likely to drive future improvement, and explore avenues for future research and strategies to address these data challenges.

摘要

许多研究都预言,将机器学习技术融入小分子药物开发中,将有助于药物发现真正实现飞跃。然而,日益先进的算法和新颖的架构并不总能带来结果的实质性改进。在本观点中,我们认为,更关注用于训练和基准测试这些模型的数据,更有可能推动未来的改进,并探讨未来的研究途径和策略,以应对这些数据挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验