Guo Yunjian, Li Kunpeng, Yue Wei, Kim Nam-Young, Li Yang, Shen Guozhen, Lee Jong-Chul
Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea.
Radio Frequency Integrated Circuit (RFIC) Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
Nanomicro Lett. 2024 Oct 16;17(1):41. doi: 10.1007/s40820-024-01545-8.
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities. Unlike existing approaches that often focus on static gestures and require extensive labeled data, the proposed wearable wristband with self-supervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios. It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes, resulting in high-sensitivity capacitance output. Through wireless transmission from a Wi-Fi module, the proposed algorithm learns latent features from the unlabeled signals of random wrist movements. Remarkably, only few-shot labeled data are sufficient for fine-tuning the model, enabling rapid adaptation to various tasks. The system achieves a high accuracy of 94.9% in different scenarios, including the prediction of eight-direction commands, and air-writing of all numbers and letters. The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training. Its utility has been further extended to enhance human-machine interaction over digital platforms, such as game controls, calculators, and three-language login systems, offering users a natural and intuitive way of communication.
可穿戴腕带系统利用深度学习彻底改变日常活动中的手势识别。与现有方法不同,现有方法通常专注于静态手势且需要大量标注数据,而所提出的具有自监督对比学习的可穿戴腕带在动态运动跟踪方面表现出色,并且能在多种场景中快速适应。它具有一个四通道传感阵列,该阵列由具有分层微锥结构的离子水凝胶和超薄柔性电极组成,可产生高灵敏度电容输出。通过Wi-Fi模块进行无线传输,所提出的算法从随机手腕运动的未标注信号中学习潜在特征。值得注意的是,只需少量标注数据就足以对模型进行微调,从而能够快速适应各种任务。该系统在不同场景下实现了94.9%的高精度,包括对八个方向命令的预测以及所有数字和字母的空中书写。所提出的方法便于在多个任务之间实现平滑过渡,而无需修改结构或进行大量特定任务训练。其效用已进一步扩展到增强数字平台上的人机交互,如游戏控制、计算器和三语言登录系统,为用户提供自然直观的交流方式。