Suppr超能文献

在大血管闭塞中使用分子和机器学习方法改善卒中结局预测

Improving Stroke Outcome Prediction Using Molecular and Machine Learning Approaches in Large Vessel Occlusion.

作者信息

Rout Madhusmita, Vaughan April, Sidorov Evgeny V, Sanghera Dharambir K

机构信息

Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

出版信息

J Clin Med. 2024 Oct 3;13(19):5917. doi: 10.3390/jcm13195917.

Abstract

: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes for this specific patient population. The present study aimed to confirm whether sudden metabolic changes due to blood-brain barrier (BBB) disruption during LVO reflect differences in circulating metabolites and RNA between small and large core strokes. The second objective was to evaluate whether integrating molecular markers with existing neurological and imaging tools can enhance outcome predictions in LVO strokes. : The infarction volume in patients was measured using magnetic resonance diffusion-weighted images, and the 90-day stroke outcome was defined by a modified Rankin Scale (mRS). Differential expression patterns of miRNAs were identified by RNA sequencing of serum-driven exosomes. Nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites associated with AIS with small and large infarctions. : We identified 41 miRNAs and 11 metabolites to be significantly associated with infarct volume in a multivariate regression analysis after adjusting for the confounders. Eight miRNAs and ketone bodies correlated significantly with infarct volume, NIHSS (severity), and mRS (outcome). Through integrative analysis of clinical, radiological, and omics data using machine learning, our study identified 11 top features for predicting stroke outcomes with an accuracy of 0.81 and AUC of 0.91. : Our study provides a future framework for advancing stroke therapeutics by incorporating molecular markers into the existing neurological and imaging tools to improve predictive efficacy and enhance patient outcomes.

摘要

预测急性缺血性卒中(AIS)的卒中结局具有挑战性,尤其是对于大血管闭塞(LVO)患者。诸如梗死体积和美国国立卫生研究院卒中量表(NIHSS)等现有工具在预测这一特定患者群体的结局方面准确性有限。本研究旨在确认LVO期间血脑屏障(BBB)破坏导致的突然代谢变化是否反映了小核心梗死和大核心梗死之间循环代谢物和RNA的差异。第二个目标是评估将分子标志物与现有的神经学和影像学工具相结合是否可以提高LVO卒中的结局预测能力。

使用磁共振扩散加权图像测量患者的梗死体积,并用改良Rankin量表(mRS)定义90天的卒中结局。通过血清驱动的外泌体的RNA测序确定miRNA的差异表达模式。利用核磁共振(NMR)波谱法鉴定与小梗死和大梗死的AIS相关的代谢物。

在对混杂因素进行调整后的多变量回归分析中,我们确定了41种miRNA和11种代谢物与梗死体积显著相关。8种miRNA和酮体与梗死体积、NIHSS(严重程度)和mRS(结局)显著相关。通过使用机器学习对临床、放射学和组学数据进行综合分析,我们的研究确定了11个预测卒中结局的顶级特征,准确率为0.81,曲线下面积为0.91。

我们的研究提供了一个未来框架,通过将分子标志物纳入现有的神经学和影像学工具,以提高预测效能并改善患者结局,从而推进卒中治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c7/11477941/ad6efd3681da/jcm-13-05917-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验