Tądel Karolina, Dudek Andrzej, Bil-Lula Iwona
Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wroclaw, Poland.
Institute of Mother and Child, 17a Kasprzaka Street, 01-211 Warsaw, Poland.
J Clin Med. 2024 Oct 7;13(19):5959. doi: 10.3390/jcm13195959.
Sepsis remains a significant contributor to neonatal mortality worldwide. However, the nonspecific nature of sepsis symptoms in neonates often leads to the necessity of empirical treatment, placing a burden of ineffective treatment on patients. Furthermore, the global challenge of antimicrobial resistance is exacerbating the situation. Artificial intelligence (AI) is transforming medical practice and in hospital settings. AI shows great potential for assessing sepsis risk and devising optimal treatment strategies. This review aims to investigate the application of AI in the detection and management of neonatal sepsis. A systematic literature review (SLR) evaluating AI methods in modeling and classifying sepsis between 1 January 2014, and 1 January 2024, was conducted. PubMed, Scopus, Cochrane, and Web of Science were systematically searched for English-language studies focusing on neonatal sepsis. The analyzed studies predominantly utilized retrospective electronic medical record (EMR) data to develop, validate, and test AI models to predict sepsis occurrence and relevant parameters. Key predictors included low gestational age, low birth weight, high results of C-reactive protein and white blood cell counts, and tachycardia and respiratory failure. Machine learning models such as logistic regression, random forest, K-nearest neighbor (KNN), support vector machine (SVM), and XGBoost demonstrated effectiveness in this context. The summarized results of this review highlight the great promise of AI as a clinical decision support system for diagnostics, risk assessment, and personalized therapy selection in managing neonatal sepsis.
脓毒症仍然是全球新生儿死亡的一个重要原因。然而,新生儿脓毒症症状的非特异性往往导致经验性治疗的必要性,给患者带来了无效治疗的负担。此外,全球抗菌药物耐药性挑战正在加剧这种情况。人工智能(AI)正在改变医疗实践和医院环境。人工智能在评估脓毒症风险和制定最佳治疗策略方面显示出巨大潜力。本综述旨在探讨人工智能在新生儿脓毒症检测和管理中的应用。我们进行了一项系统文献综述(SLR),评估了2014年1月1日至2024年1月1日期间用于脓毒症建模和分类的人工智能方法。我们系统地检索了PubMed、Scopus、Cochrane和科学网,以查找专注于新生儿脓毒症的英文研究。分析的研究主要利用回顾性电子病历(EMR)数据来开发、验证和测试人工智能模型,以预测脓毒症的发生和相关参数。关键预测因素包括低胎龄、低出生体重、C反应蛋白和白细胞计数升高,以及心动过速和呼吸衰竭。在这种情况下,逻辑回归、随机森林、K近邻(KNN)、支持向量机(SVM)和XGBoost等机器学习模型显示出有效性。本综述的总结结果突出了人工智能作为临床决策支持系统在新生儿脓毒症诊断、风险评估和个性化治疗选择方面的巨大前景。