Suppr超能文献

使用机器学习技术进行新生儿疾病预测。

Neonatal Disease Prediction Using Machine Learning Techniques.

机构信息

Department of Information Systems, College of Computing and Informatics, Haromaya University, P.O. Box 138, Dire Dawa, Ethiopia.

Department of Computer Science and Engineering (CSE), School of Electrical Engineering and Computing, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.

出版信息

J Healthc Eng. 2023 Feb 23;2023:3567194. doi: 10.1155/2023/3567194. eCollection 2023.

Abstract

Neonatal diseases are among the main causes of morbidity and a significant contributor to underfive mortality in the world. There is an increase in understanding of the pathophysiology of the diseases and the implementation of different strategies to minimize their burden. However, improvements in outcomes are not adequate. Limited success is due to different factors, including the similarity of symptoms, which can lead to misdiagnosis, and the inability to detect early for timely intervention. In resource-limited countries like Ethiopia, the challenge is more severe. Low access to diagnosis and treatment due to the inadequacy of neonatal health professionals is one of the shortcomings. Due to the shortage of medical facilities, many neonatal health professionals are forced to decide the type of disease only based on interviews. They may not have a complete picture of all variables that have a contributing effect on neonatal disease from the interview. This can make the diagnosis inconclusive and may lead to a misdiagnosis. Machine learning has great potential for early prediction if relevant historical data is available. We have applied a classification stacking model for the following four main neonatal diseases: sepsis, birth asphyxia, necrotizing enter colitis (NEC), and respiratory distress syndrome. These diseases account for 75% of neonatal deaths. The dataset has been obtained from the Asella Comprehensive Hospital. It has been collected between 2018 and 2021. The developed stacking model was compared to three related machine-learning models XGBoost (XGB), Random Forest (RF), and Support Vector Machine (SVM). The proposed stacking model outperformed the other models, with an accuracy of 97.04%. We believe that this will contribute to the early detection and accurate diagnosis of neonatal diseases, especially for resource-limited health facilities.

摘要

新生儿疾病是世界范围内发病率的主要原因之一,也是导致五岁以下儿童死亡的重要因素。人们对疾病的病理生理学有了更多的了解,并实施了不同的策略来最大限度地降低其负担。然而,结果的改善并不充分。有限的成功归因于不同的因素,包括症状的相似性,这可能导致误诊,并且无法及早发现以进行及时干预。在埃塞俄比亚等资源有限的国家,挑战更为严峻。由于新生儿保健专业人员不足,导致获得诊断和治疗的机会有限,这是其中的一个缺点。由于医疗设施不足,许多新生儿保健专业人员被迫仅根据访谈来决定疾病的类型。他们可能无法从访谈中全面了解对新生儿疾病有影响的所有变量。这可能导致诊断不确定,并可能导致误诊。如果有相关的历史数据,机器学习在早期预测方面具有很大的潜力。我们已经为以下四种主要的新生儿疾病应用了分类堆叠模型:败血症、出生窒息、坏死性小肠结肠炎(NEC)和呼吸窘迫综合征。这些疾病占新生儿死亡的 75%。该数据集是从阿塞拉综合医院获得的。它是在 2018 年至 2021 年期间收集的。所开发的堆叠模型与三个相关的机器学习模型 XGBoost(XGB)、随机森林(RF)和支持向量机(SVM)进行了比较。所提出的堆叠模型的表现优于其他模型,准确率为 97.04%。我们相信,这将有助于新生儿疾病的早期发现和准确诊断,特别是对于资源有限的卫生机构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3334/9981287/c6b29da4e08d/JHE2023-3567194.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验