Welsner Matthias, Navel Henning, Hosch Rene, Rathsmann Peter, Stehling Florian, Mathew Annie, Sutharsan Sivagurunathan, Strassburg Svenja, Westhölter Dirk, Taube Christian, Zensen Sebastian, Schaarschmidt Benedikt M, Forsting Michael, Nensa Felix, Holtkamp Mathias, Haubold Johannes, Salhöfer Luca, Opitz Marcel
Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany.
Department of Electrical Engineering and Applied Natural Sciences, Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany.
J Clin Med. 2024 Oct 7;13(19):5961. doi: 10.3390/jcm13195961.
Cystic fibrosis bone disease (CFBD) is a common comorbidity in adult people with cystic fibrosis (pwCF), resulting in an increased risk of bone fractures. This study evaluated the capacity of artificial intelligence (AI)-assisted low-dose chest CT (LDCT) opportunistic screening for detecting low bone mineral density (BMD) in adult pwCF. In this retrospective single-center study, 65 adult pwCF (mean age 30.1 ± 7.5 years) underwent dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae L1 to L4 to determine BMD and corresponding z-scores and completed LDCTs of the chest within three months as part of routine clinical care. A fully automated CT-based AI algorithm measured the attenuation values (Hounsfield units [HU]) of the thoracic vertebrae Th9-Th12 and first lumbar vertebra L1. The ability of the algorithm to diagnose CFBD was assessed using receiver operating characteristic (ROC) curves. HU values of Th9 to L1 and DXA-derived BMD and the corresponding z-scores of L1 to L4 showed a strong correlation (all < 0.05). The area under the curve (AUC) for diagnosing low BMD was highest for L1 (0.796; = 0.001) and Th11 (0.835; < 0.001), resulting in a specificity of 84.9% at a sensitivity level of 75%. The HU threshold values for distinguishing normal from low BMD were <197 (L1) and <212 (Th11), respectively. Routine LDCT of the chest with the fully automated AI-guided determination of thoracic and lumbar vertebral attenuation values is a valuable tool for predicting low BMD in adult pwCF, with the best results for Th11 and L1. However, further studies are required to define clear threshold values.
囊性纤维化骨病(CFBD)是成年囊性纤维化患者(pwCF)中常见的合并症,会导致骨折风险增加。本研究评估了人工智能(AI)辅助低剂量胸部CT(LDCT)机会性筛查在检测成年pwCF低骨密度(BMD)方面的能力。在这项回顾性单中心研究中,65名成年pwCF(平均年龄30.1±7.5岁)接受了L1至L4腰椎的双能X线吸收法(DXA)以确定骨密度和相应的z值,并在三个月内完成了胸部LDCT检查,作为常规临床护理的一部分。一种基于CT的全自动AI算法测量了第9至12胸椎(Th9-Th12)和第一腰椎(L1)的衰减值(亨氏单位[HU])。使用受试者操作特征(ROC)曲线评估该算法诊断CFBD的能力。Th9至L1的HU值与DXA得出的骨密度以及L1至L4相应的z值显示出很强的相关性(均<0.05)。诊断低骨密度的曲线下面积(AUC)在L1处最高(0.796;=0.001),在Th11处为0.835(<0.001),在灵敏度为75%时特异性为84.9%。区分正常与低骨密度的HU阈值分别为<197(L1)和<212(Th11)。采用全自动AI引导测定胸腰椎衰减值的胸部常规LDCT是预测成年pwCF低骨密度的有价值工具,在Th11和L1处效果最佳。然而,需要进一步研究来确定明确的阈值。