Suppr超能文献

SSG-Net:一种基于Swin Transformer滑动窗口、浅层残差网络(Shallow ResNet)和全局注意力机制(GAM)的涡旋压缩机多分支故障诊断方法

SSG-Net: A Multi-Branch Fault Diagnosis Method for Scroll Compressors Using Swin Transformer Sliding Window, Shallow ResNet, and Global Attention Mechanism (GAM).

作者信息

Xu Zhiwei, Liu Tao, Xia Zezhou, Fan Yanan, Yan Min, Dang Xu

机构信息

School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2024 Sep 26;24(19):6237. doi: 10.3390/s24196237.

Abstract

The reliable operation of scroll compressors is crucial for the efficiency of rotating machinery and refrigeration systems. To address the need for efficient and accurate fault diagnosis in scroll compressor technology under varying operating states, diverse failure modes, and different operating conditions, a multi-branch convolutional neural network fault diagnosis method (SSG-Net) has been developed. This method is based on the Swin Transformer, the Global Attention Mechanism (GAM), and the ResNet architecture. Initially, the one-dimensional time-series signal is converted into a two-dimensional image using the Short-Time Fourier Transform, thereby enriching the feature set for deep learning analysis. Subsequently, the method integrates the window attention mechanism of the Swin Transformer, the 2D convolution of GAM attention, and the shallow ResNet's two-dimensional convolution feature extraction branch network. This integration further optimizes the feature extraction process, enhancing the accuracy of fault feature recognition and sensitivity to data variability. Consequently, by combining the global and local features extracted from these three branch networks, the model significantly improves feature representation capability and robustness. Finally, experimental results on scroll compressor datasets and the CWRU dataset demonstrate diagnostic accuracies of 97.44% and 99.78%, respectively. These results surpass existing comparative models and confirm the model's superior recognition precision and rapid convergence capabilities in complex fault environments.

摘要

涡旋压缩机的可靠运行对于旋转机械和制冷系统的效率至关重要。为了满足在不同运行状态、多样故障模式和不同运行条件下对涡旋压缩机技术进行高效准确故障诊断的需求,开发了一种多分支卷积神经网络故障诊断方法(SSG-Net)。该方法基于Swin Transformer、全局注意力机制(GAM)和ResNet架构。首先,使用短时傅里叶变换将一维时间序列信号转换为二维图像,从而丰富用于深度学习分析的特征集。随后,该方法整合了Swin Transformer的窗口注意力机制、GAM注意力的二维卷积以及浅层ResNet的二维卷积特征提取分支网络。这种整合进一步优化了特征提取过程,提高了故障特征识别的准确性以及对数据变异性的敏感性。因此,通过组合从这三个分支网络提取的全局和局部特征,该模型显著提高了特征表示能力和鲁棒性。最后,在涡旋压缩机数据集和CWRU数据集上的实验结果分别表明诊断准确率为97.44%和99.78%。这些结果超过了现有的对比模型,并证实了该模型在复杂故障环境中的卓越识别精度和快速收敛能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9159/11478940/a16490e7387b/sensors-24-06237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验