Suppr超能文献

基于 MediaPipe 可注册系统的实时手部姿态监测模型。

Real-Time Hand Gesture Monitoring Model Based on MediaPipe's Registerable System.

机构信息

College of Mechanical Engineering, North University of China, Taiyuan 030051, China.

SIMITECH Co., Xi'an 710086, China.

出版信息

Sensors (Basel). 2024 Sep 27;24(19):6262. doi: 10.3390/s24196262.

Abstract

Hand gesture recognition plays a significant role in human-to-human and human-to-machine interactions. Currently, most hand gesture detection methods rely on fixed hand gesture recognition. However, with the diversity and variability of hand gestures in daily life, this paper proposes a registerable hand gesture recognition approach based on Triple Loss. By learning the differences between different hand gestures, it can cluster them and identify newly added gestures. This paper constructs a registerable gesture dataset (RGDS) for training registerable hand gesture recognition models. Additionally, it proposes a normalization method for transforming hand gesture data and a FingerComb block for combining and extracting hand gesture data to enhance features and accelerate model convergence. It also improves ResNet and introduces FingerNet for registerable single-hand gesture recognition. The proposed model performs well on the RGDS dataset. The system is registerable, allowing users to flexibly register their own hand gestures for personalized gesture recognition.

摘要

手势识别在人与人以及人与机器的交互中起着重要作用。目前,大多数手势检测方法都依赖于固定的手势识别。然而,日常生活中手势的多样性和可变性,本文提出了一种基于三重损失的可注册手势识别方法。通过学习不同手势之间的差异,它可以对其进行聚类并识别新添加的手势。本文构建了一个可注册手势数据集(RGDS),用于训练可注册手势识别模型。此外,它提出了一种用于转换手势数据的归一化方法和一个 FingerComb 块,用于组合和提取手势数据,以增强特征并加速模型收敛。它还改进了 ResNet 并引入了 FingerNet 用于可注册单手手势识别。所提出的模型在 RGDS 数据集上表现良好。该系统是可注册的,允许用户灵活地注册自己的手势,实现个性化的手势识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7178/11478756/7ebea3ae2d53/sensors-24-06262-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验