Vizitiu Alexandru Mădălin, Sandu Marius Alexandru, Dobrescu Lidia, Focșa Adrian, Molder Cristian Constantin
Faculty of Electronics, Telecommunications and Information Technology, National University of Sciences and Technologies Politehnica Bucharest, 060042 Bucharest, Romania.
The Special Telecommunications Service, 060044 Bucharest, Romania.
Sensors (Basel). 2024 Sep 28;24(19):6292. doi: 10.3390/s24196292.
Analysis of unintended compromising emissions from Video Display Units (VDUs) is an important topic in research communities. This paper examines the feasibility of recovering the information displayed on the monitor from reconstructed video frames. The study holds particular significance for our understanding of security vulnerabilities associated with the electromagnetic radiation of digital displays. Considering the amount of noise that reconstructed TEMPEST video frames have, the work in this paper focuses on two different approaches to de-noising images for efficient optical character recognition. First, an Adaptive Wiener Filter (AWF) with adaptive window size implemented in the spatial domain was tested, and then a Convolutional Neural Network (CNN) with an encoder-decoder structure that follows both classical auto-encoder model architecture and U-Net architecture (auto-encoder with skip connections). These two techniques resulted in an improvement of more than two times on the Structural Similarity Index Metric (SSIM) for AWF and up to four times for the SSIM for the Deep Learning (DL) approach. In addition, to validate the results, the possibility of text recovery from processed noisy frames was studied using a state-of-the-art Tesseract Optical Character Recognition (OCR) engine. The present work aims to bring to attention the security importance of this topic and the non-negligible character of VDU information leakages.
分析视频显示单元(VDU)产生的意外泄露发射是研究界的一个重要课题。本文研究了从重建视频帧中恢复显示器上显示信息的可行性。这项研究对于我们理解与数字显示器电磁辐射相关的安全漏洞具有特别重要的意义。考虑到重建的TEMPEST视频帧中的噪声量,本文的工作重点在于两种不同的图像去噪方法,以实现高效的光学字符识别。首先,测试了在空间域中实现的具有自适应窗口大小的自适应维纳滤波器(AWF),然后测试了一种具有编码器-解码器结构的卷积神经网络(CNN),该结构遵循经典的自动编码器模型架构和U-Net架构(带有跳跃连接的自动编码器)。这两种技术使AWF的结构相似性指数度量(SSIM)提高了两倍多,深度学习(DL)方法的SSIM提高了四倍之多。此外,为了验证结果,使用先进的Tesseract光学字符识别(OCR)引擎研究了从处理后的噪声帧中恢复文本的可能性。本工作旨在引起人们对该主题安全重要性以及VDU信息泄露不可忽视性的关注。