Suppr超能文献

DMF-Net:一种用于高分辨率胸部 CT 和 X 射线图像去噪的深度多级语义融合网络。

DMF-Net: a deep multi-level semantic fusion network for high-resolution chest CT and X-ray image de-noising.

机构信息

Department of CSE, IIT(ISM) Dhanbad, Sardar Patel Nagar, Dhanbad, 826004, Jharkhand, India.

School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.

出版信息

BMC Med Imaging. 2023 Oct 9;23(1):150. doi: 10.1186/s12880-023-01108-0.

Abstract

Medical images such as CT and X-ray have been widely used for the detection of several chest infections and lung diseases. However, these images are susceptible to different types of noise, and it is hard to remove these noises due to their complex distribution. The presence of such noise significantly deteriorates the quality of the images and significantly affects the diagnosis performance. Hence, the design of an effective de-noising technique is highly essential to remove the noise from chest CT and X-ray images prior to further processing. Deep learning methods, mainly, CNN have shown tremendous progress on de-noising tasks. However, existing CNN based models estimate the noise from the final layers, which may not carry adequate details of the image. To tackle this issue, in this paper a deep multi-level semantic fusion network is proposed, called DMF-Net for the removal of noise from chest CT and X-ray images. The DMF-Net mainly comprises of a dilated convolutional feature extraction block, a cascaded feature learning block (CFLB) and a noise fusion block (NFB) followed by a prominent feature extraction block. The CFLB cascades the features from different levels (convolutional layers) which are later fed to NFB to attain correct noise prediction. Finally, the Prominent Feature Extraction Block(PFEB) produces the clean image. To validate the proposed de-noising technique, a separate and a mixed dataset containing high-resolution CT and X-ray images with specific and blind noise are used. Experimental results indicate the effectiveness of the DMF-Net compared to other state-of-the-art methods in the context of peak signal-to-noise ratio (PSNR) and structural similarity measurement (SSIM) while drastically cutting down on the processing power needed.

摘要

医学影像,如 CT 和 X 射线,已被广泛用于检测多种胸部感染和肺部疾病。然而,这些图像容易受到各种类型的噪声的影响,由于其复杂的分布,很难去除这些噪声。这些噪声的存在显著降低了图像的质量,并显著影响了诊断性能。因此,设计一种有效的去噪技术对于在进一步处理之前从胸部 CT 和 X 射线图像中去除噪声是非常必要的。深度学习方法,主要是卷积神经网络(CNN),在去噪任务中取得了巨大的进展。然而,现有的基于 CNN 的模型是从最后几层估计噪声的,这可能无法携带图像的足够细节。为了解决这个问题,在本文中,我们提出了一种名为 DMF-Net 的深层多级语义融合网络,用于从胸部 CT 和 X 射线图像中去除噪声。DMF-Net 主要由一个扩张卷积特征提取块、一个级联特征学习块(CFLB)和一个噪声融合块(NFB)以及一个突出特征提取块组成。CFLB 级联来自不同层次(卷积层)的特征,这些特征随后被馈送到 NFB 中以获得正确的噪声预测。最后,突出特征提取块(PFEB)生成干净的图像。为了验证所提出的去噪技术,我们使用了一个单独的和一个混合数据集,其中包含具有特定和盲噪声的高分辨率 CT 和 X 射线图像。实验结果表明,与其他最先进的方法相比,DMF-Net 在峰值信噪比(PSNR)和结构相似性度量(SSIM)方面更有效,同时大大减少了所需的处理能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验