Suppr超能文献

使用激光雷达衍生轨迹数据的车辆和行人交通信号性能指标

Vehicle and Pedestrian Traffic Signal Performance Measures Using LiDAR-Derived Trajectory Data.

作者信息

Saldivar-Carranza Enrique D, Desai Jairaj, Thompson Andrew, Taylor Mark, Sturdevant James, Bullock Darcy M

机构信息

Joint Transportation Research Program, Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, USA.

Utah Department of Transportation, Traffic Operations Center, 2060 S 2760 W, Salt Lake City, UT 84104, USA.

出版信息

Sensors (Basel). 2024 Oct 3;24(19):6410. doi: 10.3390/s24196410.

Abstract

Light Detection and Ranging (LiDAR) sensors at signalized intersections can accurately track the movement of virtually all objects passing through at high sampling rates. This study presents methodologies to estimate vehicle and pedestrian traffic signal performance measures using LiDAR trajectory data. Over 15,000,000 vehicle and 170,000 pedestrian waypoints detected during a 24 h period at an intersection in Utah are analyzed to describe the proposed techniques. Sampled trajectories are linear referenced to generate Purdue Probe Diagrams (PPDs). Vehicle-based PPDs are used to estimate movement level turning counts, 85th percentile queue lengths (85QL), arrivals on green (AOG), highway capacity manual (HCM) level of service (LOS), split failures (SF), and downstream blockage (DSB) by time of day (TOD). Pedestrian-based PPDs are used to estimate wait times and the proportion of people that traverse multiple crosswalks. Although vehicle signal performance can be estimated from several days of aggregated connected vehicle (CV) data, LiDAR data provides the ability to measure performance in real time. Furthermore, LiDAR can measure pedestrian speeds. At the studied location, the 15th percentile pedestrian walking speed was estimated to be 3.9 ft/s. The ability to directly measure these pedestrian speeds allows agencies to consider alternative crossing times than those suggested by the Manual on Uniform Traffic Control Devices (MUTCD).

摘要

信号灯交叉口处的光探测与测距(LiDAR)传感器能够以高采样率精确跟踪几乎所有通过物体的运动。本研究提出了利用LiDAR轨迹数据估算车辆和行人交通信号性能指标的方法。对在犹他州一个交叉口24小时内检测到的超过1500万个车辆航点和17万个行人航点进行了分析,以描述所提出的技术。对采样轨迹进行线性参考以生成普渡探针图(PPD)。基于车辆的PPD用于按日时段(TOD)估算转向运动水平计数、第85百分位排队长度(85QL)、绿灯到达率(AOG)、公路容量手册(HCM)服务水平(LOS)、信号配时失败(SF)和下游拥堵(DSB)。基于行人的PPD用于估算等待时间以及穿过多个人行横道的人员比例。虽然车辆信号性能可以从几天的聚合联网车辆(CV)数据中估算出来,但LiDAR数据提供了实时测量性能的能力。此外,LiDAR可以测量行人速度。在研究地点,第15百分位行人步行速度估计为3.9英尺/秒。直接测量这些行人速度的能力使各机构能够考虑采用不同于《统一交通控制设备手册》(MUTCD)建议的替代过街时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0d/11479351/4f7053d92809/sensors-24-06410-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验