Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea.
ICT Convergence Research Center, Soonchunhyang University, Asan 31538, Republic of Korea.
Sensors (Basel). 2024 Oct 4;24(19):6432. doi: 10.3390/s24196432.
Falls represent a significant risk factor, necessitating accurate classification methods. This study aims to identify the optimal placement of wearable sensors-specifically accelerometers, gyroscopes, and magnetometers-for effective fall-direction classification. Although previous research identified optimal sensor locations for distinguishing falls from non-falls, limited attention has been given to the classification of fall direction across different body regions. This study assesses inertial measurement unit (IMU) sensors placed at 12 distinct body locations to determine the most effective positions for capturing fall-related data. The research was conducted in three phases: first, comparing classifiers across all sensor locations to identify the most effective; second, evaluating performance differences between sensors placed on the left and right sides of the body; and third, exploring the efficacy of combining sensors from the upper and lower body regions. Statistical analyses of the results for the most effective classifier model demonstrate that the support vector machine (SVM) is more effective than other classifiers across all sensor locations, with statistically significant differences in performance. At the same time, the comparison between the left and right sensor locations shows no significant performance differences within the same anatomical areas. Regarding optimal sensor placement, the findings indicate that sensors positioned on the pelvis and upper legs in the lower body, as well as on the shoulder and head in the upper body, were the most effective results for accurate fall-direction classification. The study concludes that the optimal sensor configuration for fall-direction classification involves strategically combining sensors placed on the pelvis, upper legs, and lower legs.
跌倒代表着一个重大的风险因素,因此需要采用准确的分类方法。本研究旨在确定可穿戴传感器(尤其是加速度计、陀螺仪和磁力计)的最佳放置位置,以实现有效的跌倒方向分类。虽然先前的研究已经确定了用于区分跌倒与非跌倒的最佳传感器位置,但对于不同身体部位的跌倒方向分类,关注度有限。本研究评估了放置在 12 个不同身体部位的惯性测量单元 (IMU) 传感器,以确定捕获与跌倒相关数据的最有效位置。该研究分三个阶段进行:首先,在所有传感器位置上比较分类器,以确定最有效的分类器;其次,评估放置在身体左右两侧的传感器之间的性能差异;最后,探索组合来自身体上部和下部区域的传感器的效果。对最有效分类器模型的结果进行统计分析表明,支持向量机 (SVM) 在所有传感器位置上的性能均优于其他分类器,且性能存在显著差异。同时,左右传感器位置之间的比较表明,在相同解剖区域内,性能没有显著差异。关于最佳传感器位置,研究结果表明,位于身体下部的骨盆和大腿以及身体上部的肩部和头部的传感器的放置位置最有利于进行准确的跌倒方向分类。本研究得出的结论是,用于跌倒方向分类的最佳传感器配置涉及策略性地组合放置在骨盆、大腿和小腿上的传感器。