Suppr超能文献

基于可穿戴传感器的老年人未来跌倒风险预测模型。

Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1812-1820. doi: 10.1109/TNSRE.2017.2687100. Epub 2017 Mar 24.

Abstract

Wearable sensors can provide quantitative, gait-based assessments that can translate to point-of-care environments. This investigation generated elderly fall-risk predictive models based on wearable-sensor-derived gait data and prospective fall occurrence, and identified the optimal sensor type, location, and combination for single and dual-task walking. 75 individuals who reported six month prospective fall occurrence (75.2 ± 6.6 years; 47 non-fallers and 28 fallers) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensinginsoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Fall-risk classificationmodels were assessed for all sensor combinations and three model types: neural network, naïve Bayesian, and support vector machine. The best performing model used a neural network, dual-task gait data, and input parameters from head, pelvis, and left shank accelerometers (accuracy = 57%, sensitivity = 43%, and specificity = 65%). The best single-sensor model used a neural network, dual-task gait data, and pelvis accelerometer parameters (accuracy = 54%, sensitivity = 35%, and specificity = 67%). Single-task and dual-task gait assessments provided similar fall-risk model performance. Fall-risk predictive models developed for point-of-care environments should use multi-sensor dual-task gait assessment with the pelvis location considered if assessment is limited to a single sensor.

摘要

可穿戴传感器可以提供定量的、基于步态的评估,这些评估可以转化为即时护理环境。本研究基于可穿戴传感器-derived 步态数据和前瞻性跌倒发生情况,为老年人跌倒风险预测模型生成了跌倒风险预测模型,并确定了用于单任务和双任务行走的最佳传感器类型、位置和组合。75 名报告有 6 个月前瞻性跌倒发生的个体(75.2 ± 6.6 岁;47 名非跌倒者和 28 名跌倒者)在单任务和双任务条件下行走 7.62 米,同时在头部、骨盆和左右小腿佩戴压力感应鞋垫和三轴加速度计。对所有传感器组合和三种模型类型(神经网络、朴素贝叶斯和支持向量机)评估跌倒风险分类模型。表现最佳的模型使用神经网络、双任务步态数据以及头部、骨盆和左小腿加速度计的输入参数(准确率 = 57%,灵敏度 = 43%,特异性 = 65%)。最佳的单传感器模型使用神经网络、双任务步态数据和骨盆加速度计参数(准确率 = 54%,灵敏度 = 35%,特异性 = 67%)。单任务和双任务步态评估提供了相似的跌倒风险模型性能。如果评估仅限于单个传感器,则应考虑使用多传感器双任务步态评估来为即时护理环境开发跌倒风险预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验