Suppr超能文献

利用床对压力反应力检测患者体位,以预防和管理压疮。

Detecting Patient Position Using Bed-Reaction Forces for Pressure Injury Prevention and Management.

机构信息

KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON M5G 2A2, Canada.

Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.

出版信息

Sensors (Basel). 2024 Oct 9;24(19):6483. doi: 10.3390/s24196483.

Abstract

A key best practice to prevent and treat pressure injuries (PIs) is to ensure at-risk individuals are repositioned regularly. Our team designed a non-contact position detection system that predicts an individual's position in bed using data from load cells under the bed legs. The system was originally designed to predict the individual's position as left-side lying, right-side lying, or supine. Our previous work suggested that a higher precision for detecting position (classifying more than three positions) may be needed to determine whether key bony prominences on the pelvis at high risk of PIs have been off-loaded. The objective of this study was to determine the impact of categorizing participant position with higher precision using the system prediction F1 score. Data from 18 participants was collected from four load cells placed under the bed legs and a pelvis-mounted inertial measurement unit while the participants assumed 21 positions. The data was used to train classifiers to predict the participants' transverse pelvic angle using three different position bin sizes (45°, ~30°, and 15°). A leave-one-participant-out cross validation approach was used to evaluate classifier performance for each bin size. Results indicated that our prediction F1 score dropped as the position category precision was increased.

摘要

预防和治疗压疮(PI)的一个重要最佳实践是确保高风险个体定期翻身。我们的团队设计了一种非接触式位置检测系统,该系统使用床腿下的称重传感器数据来预测个体在床上的位置。该系统最初的设计目的是预测个体的左侧卧位、右侧卧位或仰卧位。我们之前的工作表明,为了确定骨盆上高风险 PI 的关键骨性突起是否已被卸载,可能需要更高的位置检测精度(将位置分类为三种以上)。本研究的目的是确定使用系统预测 F1 分数对更高精度的参与者位置分类的影响。从四个放置在床腿下的称重传感器和一个骨盆安装的惯性测量单元收集了 18 名参与者的数据,参与者在这些位置上采取了 21 种姿势。使用这些数据来训练分类器,使用三种不同的位置分类大小(45°、~30°和 15°)来预测参与者的横向骨盆角度。使用一种“留一参与者外”交叉验证方法来评估每个分类大小的分类器性能。结果表明,随着位置类别精度的提高,我们的预测 F1 得分下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f162/11479332/e84e949e0bb5/sensors-24-06483-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验