Suppr超能文献

迈向减轻压力性损伤:从垂直床反作用力检测患者体位

Toward mitigating pressure injuries: Detecting patient orientation from vertical bed reaction forces.

作者信息

Wong Gordon, Gabison Sharon, Dolatabadi Elham, Evans Gary, Kajaks Tara, Holliday Pamela, Alshaer Hisham, Fernie Geoff, Dutta Tilak

机构信息

KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.

Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Rehabil Assist Technol Eng. 2020 Apr 6;7:2055668320912168. doi: 10.1177/2055668320912168. eCollection 2020 Jan-Dec.

Abstract

INTRODUCTION

Prolonged bed rest without repositioning can lead to pressure injuries. However, it can be challenging for caregivers and patients to adhere to repositioning schedules. A device that alerts caregivers when a patient has remained in the same orientation for too long may reduce the incidence and/or severity of pressure injuries. This paper proposes a method to detect a person's orientation in bed using data from load cells placed under the legs of a hospital grade bed.

METHODS

Twenty able-bodied individuals were positioned into one of three orientations (supine, left side-lying, or right side-lying) either with no support, a pillow, or a wedge, and the head of the bed either raised or lowered. Breathing pattern characteristics extracted from force data were used to train two machine learning classification systems (Logistic Regression and Feed Forward Neural Network) and then evaluate for their ability to identify each participant's orientation using a leave-one-participant-out cross-validation.

RESULTS

The Feed Forward Neural Network yielded the highest orientation prediction accuracy at 94.2%.

CONCLUSIONS

The high accuracy of this non-invasive system's ability to a participant's position in bed shows potential for this algorithm to be useful in developing a pressure injury prevention tool.

摘要

引言

长时间卧床且不重新调整体位会导致压疮。然而,护理人员和患者要坚持重新调整体位的时间表可能具有挑战性。一种在患者保持同一姿势时间过长时向护理人员发出警报的设备,可能会降低压疮的发生率和/或严重程度。本文提出了一种利用放置在医院病床床腿下方的称重传感器数据来检测患者在床上体位的方法。

方法

20名身体健全的个体被放置在三种体位(仰卧、左侧卧或右侧卧)之一,分别有无支撑物、一个枕头或一个楔形物,并且床头要么抬高要么降低。从力数据中提取的呼吸模式特征被用于训练两个机器学习分类系统(逻辑回归和前馈神经网络),然后使用留一法交叉验证评估它们识别每个参与者体位的能力。

结果

前馈神经网络的体位预测准确率最高,为94.2%。

结论

这种非侵入性系统检测参与者在床上体位的能力具有很高的准确率,表明该算法在开发预防压疮工具方面具有潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a4/7137131/73be4b9b4ea2/10.1177_2055668320912168-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验