Suppr超能文献

HSP-UNet:一种用于油浸式变压器表面放电碳迹的精确且高效的分割方法。

HSP-UNet: An Accuracy and Efficient Segmentation Method for Carbon Traces of Surface Discharge in the Oil-Immersed Transformer.

作者信息

Ji Hongxin, Liu Xinghua, Han Peilin, Liu Liqing, He Chun

机构信息

School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China.

College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an 271018, China.

出版信息

Sensors (Basel). 2024 Oct 9;24(19):6498. doi: 10.3390/s24196498.

Abstract

Restricted by a metal-enclosed structure, the internal defects of large transformers are difficult to visually detect. In this paper, a micro-robot is used to visually inspect the interior of a transformer. For the micro-robot to successfully detect the discharge level and insulation degradation trend in the transformer, it is essential to segment the carbon trace accurately and rapidly from the complex background. However, the complex edge features and significant size differences of carbon traces pose a serious challenge for accurate segmentation. To this end, we propose the Hadamard production-Spatial coordinate attention-PixelShuffle UNet (HSP-UNet), an innovative architecture specifically designed for carbon trace segmentation. To address the pixel over-concentration and weak contrast of carbon trace image, the Adaptive Histogram Equalization (AHE) algorithm is used for image enhancement. To realize the effective fusion of carbon trace features with different scales and reduce model complexity, the novel grouped Hadamard Product Attention (HPA) module is designed to replace the original convolution module of the UNet. Meanwhile, to improve the activation intensity and segmentation completeness of carbon traces, the Spatial Coordinate Attention (SCA) mechanism is designed to replace the original jump connection. Furthermore, the PixelShuffle up-sampling module is used to improve the parsing ability of complex boundaries. Compared with UNet, UNet++, UNeXt, MALUNet, and EGE-UNet, HSP-UNet outperformed all the state-of-the-art methods on both carbon trace datasets. For dendritic carbon traces, HSP-UNet improved the Mean Intersection over Union (MIoU), Pixel Accuracy (PA), and Class Pixel Accuracy (CPA) of the benchmark UNet by 2.13, 1.24, and 4.68 percentage points, respectively. For clustered carbon traces, HSP-UNet improved MIoU, PA, and CPA by 0.98, 0.65, and 0.83 percentage points, respectively. At the same time, the validation results showed that the HSP-UNet has a good model lightweighting advantage, with the number of parameters and GFLOPs of 0.061 M and 0.066, respectively. This study could contribute to the accurate segmentation of discharge carbon traces and the assessment of the insulation condition of the oil-immersed transformer.

摘要

受金属封闭结构的限制,大型变压器的内部缺陷难以直观检测。本文采用微型机器人对变压器内部进行视觉检查。为使微型机器人成功检测变压器中的放电水平和绝缘劣化趋势,从复杂背景中准确快速地分割出碳痕至关重要。然而,碳痕复杂的边缘特征和显著的尺寸差异对精确分割构成了严峻挑战。为此,我们提出了哈达玛积-空间坐标注意力-像素洗牌UNet(HSP-UNet),这是一种专门为碳痕分割设计的创新架构。为解决碳痕图像的像素过度集中和对比度低的问题,采用自适应直方图均衡化(AHE)算法进行图像增强。为实现不同尺度碳痕特征的有效融合并降低模型复杂度,设计了新颖的分组哈达玛积注意力(HPA)模块来取代UNet的原始卷积模块。同时,为提高碳痕的激活强度和分割完整性,设计了空间坐标注意力(SCA)机制来取代原始的跳跃连接。此外,采用像素洗牌上采样模块来提高复杂边界的解析能力。与UNet、UNet++、UNeXt、MALUNet和EGE-UNet相比,HSP-UNet在两个碳痕数据集上均优于所有现有方法。对于树枝状碳痕,HSP-UNet将基准UNet的平均交并比(MIoU)、像素准确率(PA)和类别像素准确率(CPA)分别提高了2.13、1.24和4.68个百分点。对于簇状碳痕,HSP-UNet将MIoU、PA和CPA分别提高了0.98、0.65和0.83个百分点。同时,验证结果表明HSP-UNet具有良好的模型轻量化优势,参数数量和GFLOP分别为0.061M和0.066。本研究有助于放电碳痕的精确分割以及油浸式变压器绝缘状况的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e410/11479276/a11a04087eec/sensors-24-06498-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验