文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于平衡优化的集成卷积神经网络框架用于利用组织病理学图像进行乳腺癌多分类

Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image.

作者信息

Çetin-Kaya Yasemin

机构信息

Department of Computer Engineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.

出版信息

Diagnostics (Basel). 2024 Oct 9;14(19):2253. doi: 10.3390/diagnostics14192253.


DOI:10.3390/diagnostics14192253
PMID:39410657
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11475610/
Abstract

: Breast cancer is one of the most lethal cancers among women. Early detection and proper treatment reduce mortality rates. Histopathological images provide detailed information for diagnosing and staging breast cancer disease. : The BreakHis dataset, which includes histopathological images, is used in this study. Medical images are prone to problems such as different textural backgrounds and overlapping cell structures, unbalanced class distribution, and insufficiently labeled data. In addition to these, the limitations of deep learning models in overfitting and insufficient feature extraction make it extremely difficult to obtain a high-performance model in this dataset. In this study, 20 state-of-the-art models are trained to diagnose eight types of breast cancer using the fine-tuning method. In addition, a comprehensive experimental study was conducted to determine the most successful new model, with 20 different custom models reported. As a result, we propose a novel model called MultiHisNet. : The most effective new model, which included a pointwise convolution layer, residual link, channel, and spatial attention module, achieved 94.69% accuracy in multi-class breast cancer classification. An ensemble model was created with the best-performing transfer learning and custom models obtained in the study, and model weights were determined with an Equilibrium Optimizer. The proposed ensemble model achieved 96.71% accuracy in eight-class breast cancer detection. : The results show that the proposed model will support pathologists in successfully diagnosing breast cancer.

摘要

乳腺癌是女性中最致命的癌症之一。早期检测和适当治疗可降低死亡率。组织病理学图像为乳腺癌的诊断和分期提供详细信息。本研究使用了包含组织病理学图像的BreakHis数据集。医学图像容易出现不同纹理背景和细胞结构重叠、类别分布不均衡以及数据标注不足等问题。除此之外,深度学习模型在过拟合和特征提取不足方面的局限性使得在该数据集中获得高性能模型极其困难。在本研究中,使用微调方法训练了20个最先进的模型来诊断八种类型的乳腺癌。此外,还进行了一项全面的实验研究以确定最成功的新模型,报告了20种不同的定制模型。结果,我们提出了一种名为MultiHisNet的新型模型。包含逐点卷积层、残差连接、通道和空间注意力模块的最有效的新模型在多类别乳腺癌分类中达到了94.69%的准确率。利用研究中获得的性能最佳的迁移学习和定制模型创建了一个集成模型,并使用平衡优化器确定了模型权重。所提出的集成模型在八类别乳腺癌检测中达到了96.71%的准确率。结果表明,所提出的模型将有助于病理学家成功诊断乳腺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/aefc6f2f171e/diagnostics-14-02253-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/b6894f57c28a/diagnostics-14-02253-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/0328aca5cf7a/diagnostics-14-02253-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/c0244ae91079/diagnostics-14-02253-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/c4337fd1111f/diagnostics-14-02253-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/4c3713cf5633/diagnostics-14-02253-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/aefc6f2f171e/diagnostics-14-02253-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/b6894f57c28a/diagnostics-14-02253-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/0328aca5cf7a/diagnostics-14-02253-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/c0244ae91079/diagnostics-14-02253-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/c4337fd1111f/diagnostics-14-02253-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/4c3713cf5633/diagnostics-14-02253-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/11475610/aefc6f2f171e/diagnostics-14-02253-g006a.jpg

相似文献

[1]
Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image.

Diagnostics (Basel). 2024-10-9

[2]
Non-annotated renal histopathological image analysis with deep ensemble learning.

Quant Imaging Med Surg. 2023-9-1

[3]
Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head.

Diagnostics (Basel). 2022-5-5

[4]
Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.

BMC Med Imaging. 2023-1-30

[5]
Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation.

Diagnostics (Basel). 2021-3-16

[6]
Breast cancer detection from biopsy images using nucleus guided transfer learning and belief based fusion.

Comput Biol Med. 2020-9

[7]
A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging.

Diagnostics (Basel). 2024-2-9

[8]
Sliding window based deep ensemble system for breast cancer classification.

J Med Eng Technol. 2021-5

[9]
BCHisto-Net: Breast histopathological image classification by global and local feature aggregation.

Artif Intell Med. 2021-11

[10]
MTRRE-Net: A deep learning model for detection of breast cancer from histopathological images.

Comput Biol Med. 2022-11

本文引用的文献

[1]
Deep learning approaches for breast cancer detection in histopathology images: A review.

Cancer Biomark. 2024

[2]
A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging.

Diagnostics (Basel). 2024-2-9

[3]
A survey on cancer detection via convolutional neural networks: Current challenges and future directions.

Neural Netw. 2024-1

[4]
Recent Developments in Equilibrium Optimizer Algorithm: Its Variants and Applications.

Arch Comput Methods Eng. 2023-4-12

[5]
Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.

BMC Med Imaging. 2023-1-30

[6]
A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer.

Bioengineering (Basel). 2022-8-15

[7]
Multi-Class Classification of Breast Cancer Using 6B-Net with Deep Feature Fusion and Selection Method.

J Pers Med. 2022-4-26

[8]
A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism.

Comput Math Methods Med. 2022

[9]
Transfer Learning Based Lightweight Ensemble Model for Imbalanced Breast Cancer Classification.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[10]
Spectral-Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification.

Sensors (Basel). 2020-8-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索