文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用DEEP_Pachi:多自注意力头对组织病理学图像中的乳腺癌病变进行多分类

Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head.

作者信息

Ukwuoma Chiagoziem C, Hossain Md Altab, Jackson Jehoiada K, Nneji Grace U, Monday Happy N, Qin Zhiguang

机构信息

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Diagnostics (Basel). 2022 May 5;12(5):1152. doi: 10.3390/diagnostics12051152.


DOI:10.3390/diagnostics12051152
PMID:35626307
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9139754/
Abstract

INTRODUCTION AND BACKGROUND: Despite fast developments in the medical field, histological diagnosis is still regarded as the benchmark in cancer diagnosis. However, the input image feature extraction that is used to determine the severity of cancer at various magnifications is harrowing since manual procedures are biased, time consuming, labor intensive, and error-prone. Current state-of-the-art deep learning approaches for breast histopathology image classification take features from entire images (generic features). Thus, they are likely to overlook the essential image features for the unnecessary features, resulting in an incorrect diagnosis of breast histopathology imaging and leading to mortality. METHODS: This discrepancy prompted us to develop DEEP_Pachi for classifying breast histopathology images at various magnifications. The suggested DEEP_Pachi collects global and regional features that are essential for effective breast histopathology image classification. The proposed model backbone is an ensemble of DenseNet201 and VGG16 architecture. The ensemble model extracts global features (generic image information), whereas DEEP_Pachi extracts spatial information (regions of interest). Statistically, the evaluation of the proposed model was performed on publicly available dataset: BreakHis and ICIAR 2018 Challenge datasets. RESULTS: A detailed evaluation of the proposed model's accuracy, sensitivity, precision, specificity, and f1-score metrics revealed the usefulness of the backbone model and the DEEP_Pachi model for image classifying. The suggested technique outperformed state-of-the-art classifiers, achieving an accuracy of 1.0 for the benign class and 0.99 for the malignant class in all magnifications of BreakHis datasets and an accuracy of 1.0 on the ICIAR 2018 Challenge dataset. CONCLUSIONS: The acquired findings were significantly resilient and proved helpful for the suggested system to assist experts at big medical institutions, resulting in early breast cancer diagnosis and a reduction in the death rate.

摘要

引言与背景:尽管医学领域发展迅速,但组织学诊断仍是癌症诊断的金标准。然而,用于在不同放大倍数下确定癌症严重程度的输入图像特征提取过程十分棘手,因为手动操作存在偏差、耗时、劳动强度大且容易出错。当前用于乳腺组织病理学图像分类的最先进深度学习方法从整个图像中提取特征(通用特征)。因此,它们很可能会忽略重要的图像特征而关注不必要的特征,从而导致乳腺组织病理学成像的错误诊断并导致死亡。 方法:这种差异促使我们开发了DEEP_Pachi,用于对不同放大倍数的乳腺组织病理学图像进行分类。所提出的DEEP_Pachi收集有效乳腺组织病理学图像分类所需的全局和局部特征。所提出的模型主干是DenseNet201和VGG16架构的集成。集成模型提取全局特征(通用图像信息),而DEEP_Pachi提取空间信息(感兴趣区域)。从统计学角度,在所公开的数据集BreakHis和ICIAR 2018挑战赛数据集上对所提出的模型进行了评估。 结果:对所提出模型的准确率、灵敏度、精确率、特异性和F1分数指标的详细评估揭示了主干模型和DEEP_Pachi模型在图像分类方面的有效性。所提出的技术优于最先进的分类器,在BreakHis数据集的所有放大倍数下,良性类别的准确率达到1.0,恶性类别的准确率达到0.99,在ICIAR 2018挑战赛数据集上的准确率为1.0。 结论:所获得的结果具有显著的稳定性,并被证明有助于所建议的系统辅助大型医疗机构的专家,从而实现早期乳腺癌诊断并降低死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/045ab1624307/diagnostics-12-01152-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/8643c4573523/diagnostics-12-01152-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/a8da09b498a7/diagnostics-12-01152-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/a1c98c7d7a06/diagnostics-12-01152-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/d76cdd149b98/diagnostics-12-01152-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/f09deff56ade/diagnostics-12-01152-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/3ec411022946/diagnostics-12-01152-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/e117ecaee90f/diagnostics-12-01152-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/4e4bb268bef8/diagnostics-12-01152-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/c166f71a315a/diagnostics-12-01152-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/045ab1624307/diagnostics-12-01152-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/8643c4573523/diagnostics-12-01152-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/a8da09b498a7/diagnostics-12-01152-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/a1c98c7d7a06/diagnostics-12-01152-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/d76cdd149b98/diagnostics-12-01152-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/f09deff56ade/diagnostics-12-01152-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/3ec411022946/diagnostics-12-01152-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/e117ecaee90f/diagnostics-12-01152-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/4e4bb268bef8/diagnostics-12-01152-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/c166f71a315a/diagnostics-12-01152-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/9139754/045ab1624307/diagnostics-12-01152-g010.jpg

相似文献

[1]
Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head.

Diagnostics (Basel). 2022-5-5

[2]
BCHisto-Net: Breast histopathological image classification by global and local feature aggregation.

Artif Intell Med. 2021-11

[3]
Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.

BMC Med Imaging. 2023-1-30

[4]
LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.

Int J Comput Assist Radiol Surg. 2021-9

[5]
Attention-Based Deep Learning Approach for Breast Cancer Histopathological Image Multi-Classification.

Diagnostics (Basel). 2024-7-1

[6]
Dual_Pachi: Attention-based dual path framework with intermediate second order-pooling for Covid-19 detection from chest X-ray images.

Comput Biol Med. 2022-12

[7]
Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation.

Diagnostics (Basel). 2021-3-16

[8]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[9]
Enhancing accessibility for improved diagnosis with modified EfficientNetV2-S and cyclic learning rate strategy in women with disabilities and breast cancer.

Front Med (Lausanne). 2024-3-7

[10]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

引用本文的文献

[1]
Fusing global context with multiscale context for enhanced breast cancer classification.

Sci Rep. 2024-11-9

[2]
A novel transformer-based aggregation model for predicting gene mutations in lung adenocarcinoma.

Med Biol Eng Comput. 2024-5

[3]
LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images.

Comput Biol Med. 2022-11

[4]
Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images.

J King Saud Univ Comput Inf Sci. 2023-7

[5]
Accuracy Analysis of Deep Learning Methods in Breast Cancer Classification: A Structured Review.

Diagnostics (Basel). 2023-2-11

[6]
Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images.

Diagnostics (Basel). 2022-12-29

[7]
Dual_Pachi: Attention-based dual path framework with intermediate second order-pooling for Covid-19 detection from chest X-ray images.

Comput Biol Med. 2022-12

[8]
A Multi-Task Convolutional Neural Network for Lesion Region Segmentation and Classification of Non-Small Cell Lung Carcinoma.

Diagnostics (Basel). 2022-7-31

本文引用的文献

[1]
Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI).

Eur Radiol. 2022-6

[2]
Dilated and soft attention-guided convolutional neural network for breast cancer histology images classification.

Microsc Res Tech. 2022-4

[3]
BCHisto-Net: Breast histopathological image classification by global and local feature aggregation.

Artif Intell Med. 2021-11

[4]
Breast Cancer Histopathological Images Recognition Based on Low Dimensional Three-Channel Features.

Front Oncol. 2021-6-14

[5]
Diagnostic Performance of Adjunctive Imaging Modalities Compared to Mammography Alone in Women with Non-Dense and Dense Breasts: A Systematic Review and Meta-Analysis.

Clin Breast Cancer. 2021-8

[6]
Breast Cancer and PET Imaging.

Nucl Med Rev Cent East Eur. 2021

[7]
Fusion of whole and part features for the classification of histopathological image of breast tissue.

Health Inf Sci Syst. 2020-11-4

[8]
Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning.

J Pers Med. 2020-11-6

[9]
Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs).

Front Genet. 2020-9-4

[10]
Thermal Imaging Techniques for Breast Screening - A Survey.

Curr Med Imaging. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索