Suppr超能文献

癌症研究的基因特征: 25 年的回顾与未来方向。

Gene signatures for cancer research: A 25-year retrospective and future avenues.

机构信息

College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.

Dipartimento di Informatica Sistemistica e Comunicazione, Università di Milano-Bicocca, Milan, Italy.

出版信息

PLoS Comput Biol. 2024 Oct 16;20(10):e1012512. doi: 10.1371/journal.pcbi.1012512. eCollection 2024 Oct.

Abstract

Over the past two decades, extensive studies, particularly in cancer analysis through large datasets like The Cancer Genome Atlas (TCGA), have aimed at improving patient therapies and precision medicine. However, limited overlap and inconsistencies among gene signatures across different cohorts pose challenges. The dynamic nature of the transcriptome, encompassing diverse RNA species and functional complexities at gene and isoform levels, introduces intricacies, and current gene signatures face reproducibility issues due to the unique transcriptomic landscape of each patient. In this context, discrepancies arising from diverse sequencing technologies, data analysis algorithms, and software tools further hinder consistency. While careful experimental design, analytical strategies, and standardized protocols could enhance reproducibility, future prospects lie in multiomics data integration, machine learning techniques, open science practices, and collaborative efforts. Standardized metrics, quality control measures, and advancements in single-cell RNA-seq will contribute to unbiased gene signature identification. In this perspective article, we outline some thoughts and insights addressing challenges, standardized practices, and advanced methodologies enhancing the reliability of gene signatures in disease transcriptomic research.

摘要

在过去的二十年中,大量研究,特别是通过大型数据集(如癌症基因组图谱 (TCGA))进行的癌症分析,旨在改善患者治疗和精准医学。然而,不同队列之间基因特征的有限重叠和不一致性带来了挑战。转录组的动态性质,包括基因和异构体水平的各种 RNA 种类和功能复杂性,引入了复杂性,并且由于每个患者独特的转录组景观,当前的基因特征面临可重复性问题。在这种情况下,来自不同测序技术、数据分析算法和软件工具的差异进一步阻碍了一致性。虽然精心的实验设计、分析策略和标准化协议可以提高可重复性,但未来的前景在于多组学数据集成、机器学习技术、开放科学实践和协作努力。标准化指标、质量控制措施和单细胞 RNA-seq 的进步将有助于识别无偏基因特征。在这篇观点文章中,我们概述了一些思路和见解,旨在解决挑战、标准化实践和先进方法,以提高疾病转录组研究中基因特征的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验