Suppr超能文献

解锁急性髓系白血病可重现的转录组学特征:整合、分类和药物再利用。

Unlocking reproducible transcriptomic signatures for acute myeloid leukaemia: Integration, classification and drug repurposing.

机构信息

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

School of Management, Shanxi Medical University, Taiyuan, China.

出版信息

J Cell Mol Med. 2024 Sep;28(17):e70085. doi: 10.1111/jcmm.70085.

Abstract

Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http://www.csamldb.com.

摘要

急性髓系白血病(AML)是一种高度异质性的疾病,这导致了转录组学研究中的各种发现。本研究通过整合 34 个数据集,包括 26 个对照组、6 个预后数据集和 2 个单细胞 RNA 测序(scRNA-seq)数据集,确定了 10000 个与 AML 相关的基因(ARGs)。我们专注于具有低变异性和高一致性的基因,并成功发现了 191 个 AML 特征(ASs)。利用机器学习技术,特别是 XGBoost 模型和我们的自定义框架,我们对 scRNA-seq 和 bulk RNA-seq 数据进行了 AML 亚型分类,补充了 ELN2022 分类方法。我们的研究还通过药物再利用发现了 AML 的潜在治疗方法,其中茄碱对高危 AML 患者具有潜在疗效,这得到了分子对接和转录组分析的支持。为了提高可重复性和可定制性,我们开发了 CSAMLdb,这是一个用户友好的数据库平台。它促进了本研究中几乎所有结果的重复使用和个性化分析,包括单基因预后、多基因评分、富集分析、机器学习风险评估、药物再定位分析和文献摘要命名实体识别。CSAMLdb 可在 http://www.csamldb.com 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a3f/11392829/81d3c0849204/JCMM-28-e70085-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验