Zhang Hao, Thai Phung N, Shivnaraine Rabindra V, Ren Lu, Wu Xuekun, Siepe Dirk H, Liu Yu, Tu Chengyi, Shin Hye Sook, Caudal Arianne, Mukherjee Souhrid, Leitz Jeremy, Wen Wilson Tan Lek, Liu Wenqiang, Zhu Wenjuan, Chiamvimonvat Nipavan, Wu Joseph C
Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
Cell. 2024 Dec 12;187(25):7143-7163.e22. doi: 10.1016/j.cell.2024.09.034. Epub 2024 Oct 15.
Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.
心脏纤维化会损害心脏功能,但目前尚无有效的临床治疗方法。为满足这一未被满足的需求,我们利用人诱导多能干细胞(iPSC)衍生的心脏成纤维细胞(CFs)进行了抗纤维化化合物的高通量筛选。使用iPSC衍生的心肌细胞和iPSC衍生的内皮细胞对初始候选物进行反向筛选,排除了具有心脏毒性的化合物。这一筛选过程确定青蒿琥酯为先导化合物。在促纤维化刺激后,青蒿琥酯抑制人原代CFs的增殖、迁移和收缩,减少胶原蛋白沉积,并改善三维工程心脏组织的收缩功能。青蒿琥酯还可减轻心力衰竭小鼠模型的心脏纤维化并改善心脏功能。从机制上讲,青蒿琥酯靶向髓样分化因子2(MD2)并抑制MD2/ Toll样受体4(TLR4)信号通路,减轻CFs中的纤维化基因表达。我们的研究利用了多尺度药物筛选,该筛选整合了人iPSC平台、组织工程、动物模型、计算机模拟和多组学技术,以确定MD2作为心脏纤维化的治疗靶点。