Department of Computer Science and Engineering, Chandigarh University, Punjab, India.
Arba Minch University, Arba, Minch, Ethiopia.
Sci Rep. 2024 Oct 16;14(1):24221. doi: 10.1038/s41598-024-74993-2.
Heart disease is a leading cause of death globally; therefore, accurate detection and classification are prominent, and several DL and ML methods have been developed over the last decade. However, the classical approaches may be prone to overfitting and under fitting issues, and the model performance may lag due to the unavailability of annotated datasets. To overcome these issues, the research proposed a model for heart disease detection and classification by integrating blockchain technology with a Modified mixed attention-enabled search optimizer-based CNN-Bidirectional Long Short-Term Memory (M2MASC enabled CNN-BiLSTM) model. The novel model incorporates a pre-trained VGG16 model to enhance feature extraction and improve the overall predictive accuracy. Leveraging the continuous monitoring capabilities of IoT devices, patient data is collected in real-time, providing a dynamic source to the CNN-BiLSTM model. Blockchain integration ensures stored health data's security, transparency, and immutability, addresses privacy concerns, and promotes trust in the predictive system. The classifier parameters are tuned using the modified mixed attention and search optimization. The M2MASC-enabled CNN-BiLSTM model performs better than traditional methods of accuracy 98.25%, precision 99.57%, and recall 97.53% for TP 80 with the MIT-BIH dataset.
心脏病是全球主要的死亡原因;因此,准确的检测和分类尤为重要,在过去十年中已经开发了几种深度学习(DL)和机器学习(ML)方法。然而,传统方法可能容易出现过拟合和欠拟合问题,并且由于缺乏标注数据集,模型性能可能会滞后。为了克服这些问题,研究提出了一种通过将区块链技术与改进的混合注意力启用搜索优化器的卷积神经网络-双向长短期记忆(M2MASC 启用 CNN-BiLSTM)模型集成来检测和分类心脏病的模型。该新模型结合了预训练的 VGG16 模型来增强特征提取并提高整体预测准确性。利用物联网设备的连续监测功能,实时收集患者数据,为 CNN-BiLSTM 模型提供动态源。区块链集成确保存储的健康数据的安全性、透明度和不可篡改性,解决隐私问题,并促进对预测系统的信任。使用改进的混合注意力和搜索优化来调整分类器参数。在 MIT-BIH 数据集上,使用 M2MASC 启用的 CNN-BiLSTM 模型的准确率为 98.25%、精度为 99.57%、召回率为 97.53%,TP80 时性能优于传统方法。