Suppr超能文献

一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制的增强混合模型用于心电图段分类

An Enhanced Hybrid Model Combining CNN, BiLSTM, and Attention Mechanism for ECG Segment Classification.

作者信息

Najia Mechichi, Faouzi Benzarti

机构信息

Electrical Engineering Department, ENSIT, Tunis, Tunisia.

LR-SITI, ENIT, Belvedere, Tunis, Tunisia.

出版信息

Biomed Eng Comput Biol. 2025 Jun 17;16:11795972251341051. doi: 10.1177/11795972251341051. eCollection 2025.

Abstract

Deep learning models are necessary in the field of healthcare for the diagnosis of cardiac rhythm diseases since the conventional ECG classification is based on hand-crafted feature engineering and traditional machine learning. Nevertheless, CNN and BiLSTM architectures provide automatic feature learning, enhancing ECG classification accuracy. The current research work puts forward a framework integrating CNN with CBAM and BiLSTM layers for the purpose of extracting valuable features and classifying ECG signals. The model classifies heartbeats according to the AAMI EC57 standard into 5 categories: normal beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). To tackle uneven class distributions, SMOTE synthesizes new samples, making the model more robust. Evaluation on MIT-BIH arrhythmia database yields remarkable results with 99.20% accuracy, 97.50% sensitivity, 99.81% specificity, and 98.29% mean 1 score. Deep learning methods have great potential to alleviate clinicians' workload and improve diagnostic accuracy of cardiac diseases.

摘要

由于传统的心电图分类基于手工特征工程和传统机器学习,深度学习模型在医疗保健领域对于心律疾病的诊断是必要的。然而,卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)架构提供了自动特征学习,提高了心电图分类的准确性。当前的研究工作提出了一个将CNN与卷积块注意力模块(CBAM)和BiLSTM层相结合的框架,用于提取有价值的特征并对心电图信号进行分类。该模型根据美国医学仪器促进协会(AAMI)EC57标准将心跳分为5类:正常心跳(N)、室上性异位搏动(S)、室性异位搏动(V)、融合搏动(F)和未知搏动(Q)。为了解决类别分布不均衡的问题,合成少数过采样技术(SMOTE)合成新样本,使模型更稳健。在麻省理工学院-贝斯以色列女执事医疗中心(MIT-BIH)心律失常数据库上的评估产生了显著的结果,准确率为99.20%,灵敏度为97.50%,特异性为99.81%,平均F1分数为98.29%。深度学习方法在减轻临床医生工作量和提高心脏病诊断准确性方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b096/12174755/7fafc25b3e19/10.1177_11795972251341051-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验