Suppr超能文献

动态屏障在固定占有率下调节黏连蛋白定位和基因组折叠。

Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy.

作者信息

Rahmaninejad Hadi, Xiao Yao, Tortora Maxime M C, Fudenberg Geoffrey

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA.

出版信息

bioRxiv. 2024 Oct 12:2024.10.08.617113. doi: 10.1101/2024.10.08.617113.

Abstract

In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This interplay leads to the enrichment of cohesin at barriers, isolation between neighboring topologically associating domains, and elevated contact frequency between convergent CTCF barriers across the genome. However, recent measurements present a puzzle: reported residence times for CTCF on chromatin are in the range of a few minutes, while lifetimes for cohesin are much longer. Can the observed features of genome folding result from the action of relatively transient barriers? To address this question, we developed a dynamic barrier model, where CTCF sites switch between bound and unbound states with rates that can be directly compared with biophysical measurements. Using this model, we investigated how barrier dynamics would impact observables for a range of experimental genomic and imaging datasets, including ChIP-seq, Hi-C, and microscopy. We found the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic datasets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.

摘要

在哺乳动物的间期细胞中,基因组通过黏连蛋白环挤压进行折叠,该过程受方向性CTCF屏障限制。这种相互作用导致黏连蛋白在屏障处富集,相邻拓扑相关结构域之间相互隔离,以及全基因组中汇聚的CTCF屏障之间的接触频率升高。然而,最近的测量结果却带来了一个难题:据报道,CTCF在染色质上的停留时间在几分钟范围内,而黏连蛋白的寿命则长得多。基因组折叠的这些观测特征能否由相对短暂的屏障作用导致?为了解决这个问题,我们开发了一个动态屏障模型,其中CTCF位点在结合态和未结合态之间切换的速率可直接与生物物理测量结果相比较。利用这个模型,我们研究了屏障动力学如何影响一系列实验基因组和成像数据集(包括ChIP-seq、Hi-C和显微镜观察)的可观测结果。我们发现CTCF和黏连蛋白结合时间尺度的相互作用影响了这些特征中的每一个的强度,即使在基因组数据集提供的群体平均快照中也留下了屏障动力学的特征。首先,除了屏障占有率外,屏障结合时间对于指导基因组折叠特征至关重要。其次,边界与挤压蛋白寿命的比率极大地改变了模拟的ChIP-seq和模拟的Hi-C。第三,增加挤压蛋白寿命后实验观察到的染色体形态的大规模变化需要动态屏障。通过整合多种实验数据来源,我们的生物物理模型表明,CTCF屏障结合时间有效地接近黏连蛋白挤压蛋白的寿命。我们共同证明了由生物物理测量的蛋白质动力学提供信息的模型如何拓宽了我们对基因组折叠的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a82/11482749/870254513c84/nihpp-2024.10.08.617113v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验