Rahmaninejad Hadi, Xiao Yao, Tortora Maxime M C, Fudenberg Geoffrey
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.
Genome Res. 2025 Aug 1;35(8):1745-1757. doi: 10.1101/gr.280108.124.
In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This process enriches cohesin at barriers, isolates neighboring topologically associating domains, and elevates contact frequency between convergent CTCF barriers across the genome. However, recent in vivo measurements present a puzzle: reported CTCF residence times on chromatin are in the range of a few minutes, whereas cohesin lifetimes are much longer. Can the observed features of genome folding result from relatively transient barriers? To address this question, we develop a dynamic barrier model, where CTCF sites switch between bound and unbound states. Using this model, we investigate how barrier dynamics would impact observables for a range of experimental genomic and imaging data sets, including ChIP-seq, Hi-C, and microscopy. We find the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic data sets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.
在哺乳动物的间期细胞中,基因组通过黏连蛋白环挤压折叠,该过程受方向性CTCF屏障限制。这一过程使黏连蛋白在屏障处富集,隔离相邻的拓扑相关结构域,并提高全基因组中收敛CTCF屏障之间的接触频率。然而,最近的体内测量结果却带来了一个难题:报道的CTCF在染色质上的停留时间在几分钟范围内,而黏连蛋白的寿命则长得多。基因组折叠的观察特征能否由相对短暂的屏障导致?为了解决这个问题,我们开发了一个动态屏障模型,其中CTCF位点在结合态和未结合态之间切换。利用这个模型,我们研究了屏障动态如何影响一系列实验基因组和成像数据集(包括ChIP-seq、Hi-C和显微镜观察)的可观测值。我们发现CTCF和黏连蛋白结合时间尺度的相互作用影响了这些特征中的每一个的强度,即使在基因组数据集提供的群体平均快照中也留下了屏障动态的特征。首先,除了屏障占有率外,屏障结合时间对于指导基因组折叠特征至关重要。其次,边界与挤压机寿命的比率极大地改变了模拟的ChIP-seq和模拟的Hi-C。第三,增加挤压机寿命后实验观察到的染色体形态的大规模变化需要动态屏障。通过整合多种实验数据来源,我们的生物物理模型认为CTCF屏障结合时间有效地接近黏连蛋白挤压机寿命。我们共同证明了由生物物理测量的蛋白质动力学提供信息的模型如何拓宽我们对基因组折叠的理解。