Suppr超能文献

DNA甲基化时钟难以区分炎症衰老与健康衰老,但特征校正可提高一致性并增强对炎症衰老的检测。

DNA methylation clocks struggle to distinguish inflammaging from healthy aging, but feature rectification improves coherence and enhances detection of inflammaging.

作者信息

Skinner Colin M, Conboy Michael J, Conboy Irina M

出版信息

bioRxiv. 2024 Oct 13:2024.10.09.617512. doi: 10.1101/2024.10.09.617512.

Abstract

UNLABELLED

Biological age estimation from DNA methylation and determination of relevant biomarkers is an active research problem which has predominantly been tackled with black-box penalized regression. Machine learning is used to select a small subset of features from hundreds of thousands CpG probes and to increase generalizability typically lacking with ordinary least-squares regression. Here, we show that such feature selection lacks biological interpretability and relevance in the clocks of the first- and next-generations, and clarify the logic by which these clocks systematically exclude biomarkers of aging and disease. Moreover, in contrast to the assumption that regularized linear regression is needed to prevent overfitting, we demonstrate that hypothesis-driven selection of biologically relevant features in conjunction with ordinary least squares regression yields accurate, well-calibrated, generalizable clocks with high interpretability. We further demonstrate that the interplay of disease-related shifts of predictor values and their corresponding weights, which we term feature shifts, contributes to the lack of resolution between health and disease in conventional linear models. Lastly, we introduce a method of feature rectification, which aligns these shifts to improve the distinction of age predictions for healthy people vs. patients with various diseases.

KEY FINDINGS

There is no apparent biological significance of the CpGs selected by first- and next-generation clocksThe range of residuals for first- and next-generation clock predications on healthy samples is very large; for all models tested, a prediction error of +/-10-20 years is within the 95% range of variation for healthy controls and does not signify age accelerationThere is no significant shift in the mean of residuals for patient populations relative to healthy populations for most studied first- and next-generation clocks. For those with significance, the effect size is very small.Hypothesis-driven feature pre-selection, coupled with modified forward step-wise selection yields age predictors on par with first and next-generation clocks. EN/ML is not needed.Disease-related shifts at different CpG probes, along with learned model weights, can be either positive or negative; their combination leads to de-coherence effect in linear models.Model coherence can be induced by rectifying features to have only positive shifts in patient samples; this provides a better resolution between health and disease in DNAm age models, and expectedly, introduces more non-linearity to the input data.

摘要

未标注

从DNA甲基化估计生物学年龄以及确定相关生物标志物是一个活跃的研究问题,主要通过黑箱惩罚回归来解决。机器学习用于从数十万个体CpG探针中选择一小部分特征,并提高普通最小二乘回归通常缺乏的泛化能力。在这里,我们表明这种特征选择在第一代和下一代时钟中缺乏生物学可解释性和相关性,并阐明了这些时钟系统地排除衰老和疾病生物标志物的逻辑。此外,与需要正则化线性回归来防止过拟合的假设相反,我们证明结合普通最小二乘回归对生物学相关特征进行假设驱动的选择会产生准确、校准良好、可泛化且具有高可解释性的时钟。我们进一步证明预测值与其相应权重的疾病相关变化(我们称之为特征变化)的相互作用导致了传统线性模型中健康与疾病之间缺乏分辨率。最后,我们介绍了一种特征校正方法,该方法调整这些变化以改善对健康人与各种疾病患者年龄预测的区分。

主要发现

第一代和下一代时钟选择的CpG没有明显的生物学意义

健康样本上第一代和下一代时钟预测的残差范围非常大;对于所有测试模型,±10 - 20年的预测误差在健康对照的95%变异范围内,并不表示年龄加速

对于大多数研究的第一代和下一代时钟,患者群体相对于健康群体的残差均值没有显著变化。对于那些有显著变化的,效应大小非常小。

假设驱动的特征预选择,结合改进的逐步向前选择,产生的年龄预测器与第一代和下一代时钟相当。不需要EN/ML。

不同CpG探针处与疾病相关的变化以及学习到的模型权重可以是正的或负的;它们的组合导致线性模型中的解相干效应。

通过校正特征使患者样本中仅出现正向变化,可以诱导模型相干;这在DNAm年龄模型中提供了健康与疾病之间更好的分辨率,并且预期会给输入数据引入更多非线性。

相似文献

8
Multidisciplinary rehabilitation for older people with hip fractures.老年人髋部骨折的多学科康复。
Cochrane Database Syst Rev. 2021 Nov 12;11(11):CD007125. doi: 10.1002/14651858.CD007125.pub3.
9
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验