Suppr超能文献

解码空间组织结构:一种用于多重成像分析的可扩展贝叶斯主题模型

Decoding Spatial Tissue Architecture: A Scalable Bayesian Topic Model for Multiplexed Imaging Analysis.

作者信息

Peng Xiyu, Smithy James W, Yosofvand Mohammad, Kostrzewa Caroline E, Bleile MaryLena, Ehrich Fiona D, Lee Jasme, Postow Michael A, Callahan Margaret K, Panageas Katherine S, Shen Ronglai

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA.

Department of Statistics, Texas A&M University, College Station, 77843, TX, USA.

出版信息

bioRxiv. 2024 Nov 9:2024.10.08.617293. doi: 10.1101/2024.10.08.617293.

Abstract

Recent progress in multiplexed tissue imaging is advancing the study of tumor microenvironments to enhance our understanding of treatment response and disease progression. Cellular neighborhood analysis is a popular computational approach for these complex image data. Despite its popularity, there are significant challenges, including high computational demands that limit feasibility for large-scale applications and the lack of a principled strategy for integrative analysis across images. This absence hampers the precise and consistent identification of spatial features and tracking of their dynamics over disease progression. To overcome these challenges, we introduce , a spatial topic model designed to decode high-level spatial architecture across multiplexed tissue images. integrates both cell type and spatial information within a topic modelling framework, originally developed for natural language processing and adapted for computer vision. Spatial information is incorporated into the flexible design of documents, representing densely overlapping regions in images. We employ an efficient collapsed Gibbs sampling algorithm for model inference. We benchmarked the performance against five state-of-the-art algorithms through various case studies using different single-cell spatial transcriptomic and proteomic imaging platforms across different tissue types. We show that is highly scalable on large-scale image datasets with millions of cells, along with high precision and interpretability. Our findings demonstrate that consistently identifies biologically and clinically significant spatial "topics" such as tertiary lymphoid structures (TLSs) and tracks dynamic changes in spatial features over disease progression. Its computational efficiency and broad applicability across various molecular imaging platforms will enhance the analysis of large-scale tissue imaging datasets.

摘要

多重组织成像技术的最新进展推动了肿瘤微环境的研究,以加深我们对治疗反应和疾病进展的理解。细胞邻域分析是处理这些复杂图像数据的一种常用计算方法。尽管它很受欢迎,但仍存在重大挑战,包括高计算需求限制了大规模应用的可行性,以及缺乏跨图像进行综合分析的原则性策略。这种缺失阻碍了对空间特征的精确和一致识别以及对其在疾病进展过程中动态变化的追踪。为了克服这些挑战,我们引入了 ,一种旨在解码多重组织图像中高级空间结构的空间主题模型。 在一个最初为自然语言处理开发并适用于计算机视觉的主题建模框架内整合了细胞类型和空间信息。空间信息被纳入文档的灵活设计中,文档代表图像中密集重叠的区域。我们采用一种高效的塌缩吉布斯采样算法进行模型推理。我们通过使用不同组织类型的不同单细胞空间转录组和蛋白质组成像平台进行的各种案例研究,将该模型的性能与五种最先进的算法进行了基准测试。我们表明, 在具有数百万个细胞的大规模图像数据集上具有高度可扩展性,同时具有高精度和可解释性。我们的研究结果表明, 能够一致地识别生物学和临床上重要的空间“主题”,如三级淋巴结构(TLSs),并追踪疾病进展过程中空间特征的动态变化。其计算效率和在各种分子成像平台上的广泛适用性将增强对大规模组织成像数据集的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4767/11562196/5e78bc337c0a/nihpp-2024.10.08.617293v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验