Xu Ke, Li Nengquan, Ye Zeyuan, Guo Yuxi, Wu Yuxin, Gui Chenghao, Yin Xiaojun, Miao Jingsheng, Cao Xiaosong, Yang Chuluo
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
Chem Sci. 2024 Oct 4;15(43):18076-84. doi: 10.1039/d4sc04835k.
The development of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials in the deep-blue region is highly desirable. A usual approach involves constructing an extended MR-TADF framework; however, it may also intensify aggregate-caused quenching issues and thereby reduce device efficiency. In this study, we develop a molecular design strategy that fuses the MR-TADF skeleton with 9,9'-spirobifluorene (SF) units to create advanced deep-blue emitters. The SF moiety facilitates high-yield one-shot bora-Friedel-Crafts reaction towards an extended skeleton and mitigates interchromophore interactions as a steric group. Our findings reveal that orbital interactions at the fusion site significantly influence the electronic structure, and optimizing the fusion mode allows for the development of emitters with extended conjugation length while maintaining non-bonding character. The proof-of-concept emitter exhibits narrowband emission in the deep-blue region, a near-unity photoluminescence quantum yield, and a fast of 2.4 × 10 s. These exceptional properties enable the corresponding sensitizer-free OLED to achieve a maximum external quantum efficiency (EQE) of 39.0% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.13, 0.09). Furthermore, the hyperfluorescence device realizes an EQE of 40.4% with very low efficiency roll-off.
开发深蓝色区域的多共振热激活延迟荧光(MR-TADF)材料是非常有必要的。一种常见的方法是构建扩展的MR-TADF框架;然而,这也可能加剧聚集诱导猝灭问题,从而降低器件效率。在本研究中,我们开发了一种分子设计策略,将MR-TADF骨架与9,9'-螺二芴(SF)单元融合,以制备先进的深蓝色发光体。SF部分促进了对扩展骨架的高产率一次性硼-傅克反应,并作为空间基团减轻发色团间的相互作用。我们的研究结果表明,融合位点的轨道相互作用显著影响电子结构,优化融合模式能够在保持非键特征的同时开发具有扩展共轭长度的发光体。概念验证发光体在深蓝色区域表现出窄带发射、接近1的光致发光量子产率以及2.4×10⁶ s⁻¹的快速衰减。这些优异的性能使相应的无敏化剂有机发光二极管实现了39.0%的最大外量子效率(EQE)和国际照明委员会(CIE)坐标(0.13, 0.09)。此外,超荧光器件实现了40.4%的EQE,且效率滚降非常低。