Suppr超能文献

初诊脑卒中患者卒中后抑郁的轨迹及预测因素:一项前瞻性纵向研究。

Trajectory and predictors of post-stroke depression among patients with newly diagnosed stroke: A prospective longitudinal study.

机构信息

School of Nursing, Fudan University, Shanghai, China; School of Nursing, Hengyang Medical School, University of South China, Hengyang, China.

School of Nursing, Hengyang Medical School, University of South China, Hengyang, China.

出版信息

J Stroke Cerebrovasc Dis. 2024 Dec;33(12):108092. doi: 10.1016/j.jstrokecerebrovasdis.2024.108092. Epub 2024 Oct 16.

Abstract

BACKGROUND

Post-stroke depression (PSD) is the most prevalent neuropsychological disorder among stroke patients, affecting approximately one-third of stroke survivors at any one time after a stroke. We identified between-person associations between post-stroke depression trajectories across 3 timepoints and predictors affecting trajectory classification among stroke patients.

METHODS

This is a prospective longitudinal study using a convenience sample of 119 participants from 2 tertiary hospitals from March 2022 to September 2022. Clinical assessments and data collection were performed at diagnosis (T1), 3 months (T2), and 6 months (T3) after diagnosis. The instruments were Demographic and Disease Information Sheet and PROMIS-Depression 8a. Data were analyzed using SPSS 27.0 for descriptive statistics, logistic regression, and the Mplus program for growth mixture model analysis.

RESULTS

Two stroke survivors depression trajectory classes (Class 1, moderate level decreasing- [37.8 %], and Class 2, high level increasing- [62.2%]) were delineated. Class 1 experienced moderate depression post-stroke, with a smooth diminishing pattern at T2 and T3, while Class 2 had a higher baseline depressive score and a significant increase at T2 and T3. The best growth mixture model was Class 2 model (LMR, p=0.010, BLRT, p≤0.01, AIC=2611.934, BIC=2650.842, aBIC=2606.583, Entropy= 0.944). The logistic regression results revealed that Class 2 of depression trajectory had a significant association with a lower score on cognitive function (B=-5.29, 95%CI: -8.80, -1.78, p <0.05) compared with Class 1. The stroke type, marital status, and monthly income were predictors of the Class 2 depression trajectory group among stroke patients. Precisely, ischemic stroke is associated with lower risk of class 2 trajectory.

CONCLUSION

The trajectory of post-stroke depression changes over time. This research has the potential to serve as a foundation for the assessment of high-risk stroke patients, the development of precise management programs, the implementation of risk stratification, and the enhancement of prognosis.

摘要

背景

卒中后抑郁(PSD)是卒中患者中最常见的神经心理障碍,约有三分之一的卒中幸存者在卒中后任何一个时间点都会发生。我们在 3 个时间点识别了卒中后抑郁轨迹的个体间关联,并确定了影响卒中患者轨迹分类的预测因素。

方法

这是一项前瞻性纵向研究,使用 2022 年 3 月至 9 月从 2 家三级医院招募的 119 名方便样本参与者。在诊断时(T1)、3 个月(T2)和 6 个月(T3)进行临床评估和数据收集。使用人口统计学和疾病信息表和 PROMIS-Depression 8a 进行评估。使用 SPSS 27.0 进行描述性统计、逻辑回归和 Mplus 程序进行增长混合模型分析。

结果

确定了卒中幸存者抑郁轨迹的 2 个类别(类别 1,中度水平下降[37.8%]和类别 2,高水平增加[62.2%])。类别 1 经历了卒中后的中度抑郁,T2 和 T3 时呈平稳减少模式,而类别 2 有更高的基线抑郁评分,并在 T2 和 T3 时显著增加。最佳增长混合模型是类别 2 模型(LMR,p=0.010,BLRT,p≤0.01,AIC=2611.934,BIC=2650.842,aBIC=2606.583,Entropy=0.944)。逻辑回归结果表明,与类别 1 相比,抑郁轨迹的类别 2 与认知功能评分较低(B=-5.29,95%CI:-8.80,-1.78,p<0.05)有显著关联。卒中类型、婚姻状况和月收入是卒中患者中抑郁轨迹类别 2 的预测因素。具体而言,缺血性卒中与较低的 2 类轨迹风险相关。

结论

卒中后抑郁的轨迹随时间而变化。这项研究有可能为评估高危卒中患者、制定精确的管理方案、实施风险分层以及改善预后提供依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验