Uthamacumaran Abicumaran
Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
Interdiscip Sci. 2025 Mar;17(1):59-85. doi: 10.1007/s12539-024-00657-4. Epub 2024 Oct 17.
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
小儿胶质母细胞瘤是一种复杂的动态疾病,由于其多种适应性行为(主要由表型可塑性驱动)而难以治疗。综合数据科学和网络理论管道提供了研究胶质母细胞瘤细胞命运动态的新方法,特别是随着时间推移的表型转变。在这里,我们使用了各种单细胞轨迹推断算法来推断调节小儿胶质母细胞瘤-免疫细胞网络的信号动态。我们确定了GATA2、PTPRZ1、TPT1、MTRNR2L1/2、OLIG1/2、SOX11、FXYD6、SEZ6L、PDGFRA、EGFR、S100B、WNT、TNF 和NF-κB作为调节胶质母细胞瘤-免疫网络动态的关键转变基因或信号,揭示了潜在的临床相关靶点。此外,我们重建了胶质母细胞瘤细胞命运吸引子,并在胶质母细胞瘤表型转变中发现了复杂的分岔动态,这表明一种因果模式可能正在驱动胶质母细胞瘤的进化和细胞命运决策。总之,我们的研究结果对开发针对胶质母细胞瘤的靶向治疗以及持续整合定量方法和人工智能(AI)以理解小儿胶质母细胞瘤肿瘤-免疫相互作用具有重要意义。