文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PD1 信号调控网络与多形性胶质母细胞瘤的预后相关。

Regulatory Network of PD1 Signaling Is Associated with Prognosis in Glioblastoma Multiforme.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.

出版信息

Cancer Res. 2021 Nov 1;81(21):5401-5412. doi: 10.1158/0008-5472.CAN-21-0730. Epub 2021 Sep 7.


DOI:10.1158/0008-5472.CAN-21-0730
PMID:34493595
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8563450/
Abstract

Glioblastoma is an aggressive cancer of the brain and spine. While analysis of glioblastoma 'omics data has somewhat improved our understanding of the disease, it has not led to direct improvement in patient survival. Cancer survival is often characterized by differences in gene expression, but the mechanisms that drive these differences are generally unknown. We therefore set out to model the regulatory mechanisms associated with glioblastoma survival. We inferred individual patient gene regulatory networks using data from two different expression platforms from The Cancer Genome Atlas. We performed comparative network analysis between patients with long- and short-term survival. Seven pathways were identified as associated with survival, all of them involved in immune signaling; differential regulation of PD1 signaling was validated to correspond with outcome in an independent dataset from the German Glioma Network. In this pathway, transcriptional repression of genes for which treatment options are available was lost in short-term survivors; this was independent of mutational burden and only weakly associated with T-cell infiltration. Collectively, these results provide a new way to stratify patients with glioblastoma that uses network features as biomarkers to predict survival. They also identify new potential therapeutic interventions, underscoring the value of analyzing gene regulatory networks in individual patients with cancer. SIGNIFICANCE: Genome-wide network modeling of individual glioblastomas identifies dysregulation of PD1 signaling in patients with poor prognosis, indicating this approach can be used to understand how gene regulation influences cancer progression.

摘要

胶质母细胞瘤是一种侵袭性的脑和脊柱癌症。虽然对胶质母细胞瘤的“组学”数据的分析在一定程度上提高了我们对这种疾病的认识,但并没有直接提高患者的生存率。癌症的生存通常以基因表达的差异为特征,但驱动这些差异的机制通常是未知的。因此,我们着手建立与胶质母细胞瘤生存相关的调控机制模型。我们使用来自癌症基因组图谱的两个不同表达平台的数据来推断个体患者的基因调控网络。我们对长期和短期生存患者的网络进行了比较分析。确定了七个与生存相关的途径,它们都涉及免疫信号;在独立的德国神经胶质瘤网络数据集验证了 PD1 信号的差异调节与结果相关。在该途径中,短期存活者中可治疗的基因的转录抑制丢失;这与突变负担无关,仅与 T 细胞浸润有微弱关联。总之,这些结果为胶质母细胞瘤患者提供了一种新的分层方法,该方法将网络特征用作预测生存的生物标志物。它们还确定了新的潜在治疗干预措施,强调了在癌症患者中分析基因调控网络的价值。意义:对个体胶质母细胞瘤的全基因组网络建模确定了 PD1 信号在预后不良患者中的失调,表明这种方法可用于了解基因调控如何影响癌症进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/d6660f04305d/5401fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/9c1439c53429/5401fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/66d96613740c/5401fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/5e83f7bca89a/5401fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/495b6820c916/5401fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/bc9086181399/5401fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/d6660f04305d/5401fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/9c1439c53429/5401fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/66d96613740c/5401fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/5e83f7bca89a/5401fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/495b6820c916/5401fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/bc9086181399/5401fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a15/9662910/d6660f04305d/5401fig6.jpg

相似文献

[1]
Regulatory Network of PD1 Signaling Is Associated with Prognosis in Glioblastoma Multiforme.

Cancer Res. 2021-11-1

[2]
Characterization of the Clinical Significance of PD-1/PD-Ls Expression and Methylation in Patients With Low-Grade Glioma.

Technol Cancer Res Treat. 2021

[3]
Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network.

Oncotarget. 2016-7-5

[4]
A novel immune cell signature for predicting glioblastoma after radiotherapy prognosis and guiding therapy.

Int J Immunopathol Pharmacol. 2024

[5]
Comprehensive Analysis of CD163 as a Prognostic Biomarker and Associated with Immune Infiltration in Glioblastoma Multiforme.

Biomed Res Int. 2021

[6]
Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.

J Cell Physiol. 2021-1

[7]
Correlation of immune phenotype with IDH mutation in diffuse glioma.

Neuro Oncol. 2017-10-19

[8]
Heterogeneity of tumor-infiltrating lymphocytes ascribed to local immune status rather than neoantigens by multi-omics analysis of glioblastoma multiforme.

Sci Rep. 2017-7-31

[9]
Gene co-expression network construction and analysis for identification of genetic biomarkers associated with glioblastoma multiforme using topological findings.

J Egypt Natl Canc Inst. 2023-7-24

[10]
Association between PD1 mRNA and response to anti-PD1 monotherapy across multiple cancer types.

Ann Oncol. 2018-10-1

引用本文的文献

[1]
Sample-specific network analysis identifies gene co-expression patterns of immunotherapy response in clear cell renal cell carcinoma.

iScience. 2025-7-5

[2]
Gene regulatory network integration with multi-omics data enhances survival predictions in cancer.

Brief Bioinform. 2025-7-2

[3]
Utilizing cohort-level and individual networks to predict best response in patients with metastatic triple negative breast cancer.

NPJ Precis Oncol. 2025-6-13

[4]
Patient-specific gene co-expression networks reveal novel subtypes and predictive biomarkers in lung adenocarcinoma.

NPJ Syst Biol Appl. 2025-5-9

[5]
Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev. 2025-1-1

[6]
Adjustment of spurious correlations in co-expression measurements from RNA-Sequencing data.

Bioinformatics. 2023-10-3

[7]
Glioblastoma survival is associated with distinct proteomic alteration signatures post chemoirradiation in a large-scale proteomic panel.

Front Oncol. 2023-8-10

[8]
Heterogeneity in the gene regulatory landscape of leiomyosarcoma.

NAR Cancer. 2023-7-24

[9]
The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks.

Genome Biol. 2023-3-9

[10]
Network-based approaches for modeling disease regulation and progression.

Comput Struct Biotechnol J. 2022-12-16

本文引用的文献

[1]
Common cell type nomenclature for the mammalian brain.

Elife. 2020-12-29

[2]
PUMA: PANDA Using MicroRNA Associations.

Bioinformatics. 2020-9-15

[3]
Sex Differences in Gene Expression and Regulatory Networks across 29 Human Tissues.

Cell Rep. 2020-6-23

[4]
PD-1 Inhibitors: Do they have a Future in the Treatment of Glioblastoma?

Clin Cancer Res. 2020-10-15

[5]
Pan-cancer analysis of whole genomes.

Nature. 2020-2-5

[6]
EndNote: Feature-based classification of networks.

Netw Sci (Camb Univ Press). 2019-9

[7]
Targeting transcription factors in cancer - from undruggable to reality.

Nat Rev Cancer. 2019-9-11

[8]
Determining cell type abundance and expression from bulk tissues with digital cytometry.

Nat Biotechnol. 2019-5-6

[9]
Estimating Sample-Specific Regulatory Networks.

iScience. 2019-4-26

[10]
Tumor mutational load predicts survival after immunotherapy across multiple cancer types.

Nat Genet. 2019-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索