Klaassens Eline Suzanne, Baak Mirna Lilian, Mekkes Nienke Jacobine, Bongoni Radhika, Schaubeck Monika
BaseClear B.V., Leiden 2333 BE, the Netherlands.
Research & Development, HiPP GmbH & Co. Vertrieb KG, Pfaffenhofen 85276, Germany.
Microbiome Res Rep. 2024 Jun 28;3(3):38. doi: 10.20517/mrr.2024.13. eCollection 2024.
Microbial colonization of the neonatal gut is pivotal in priming the infant's immune system. Human milk (HM) is the best nutrition for infants and supports the development of the microbiota due to prebiotic compounds and probiotic microorganisms. When exclusive breastfeeding is not possible, infant formula (IF) with probiotics is a strategy to support the infant's microbiome development. However, knowledge about the effects of the infant gut microbiota and different compounds in IF on individual probiotic strains is limited, as strain-level detection in a complex ecosystem is challenging. The aim of the present study was to show the effects of IF with different protein forms on the metabolic activity of two probiotic strains isolated from HM in a complex ecosystem. By using an infant gut model containing infant donor-microbiota, the effects of IF with either intact or extensively hydrolyzed protein on the metabolic activity of the donor microbiota, as well as two probiotic strains [ () CECT 5716 (Lf) and () DSM 32583 (Bb)], were analyzed. A new bioinformatic pipeline combined with a specific infant microbiome database was used to explore shotgun metagenome datasets (1200 Megabases) for taxonomic identification and strain-level tracking. Both protein forms (i.e., intact or extensively hydrolyzed protein) in IF supported infant gut microbial metabolic activity equally, as evidenced by similar levels of short-chain fatty acids (SCFAs). Interestingly, gut microbial metabolic activity was found to be differently activated in a strain-dependent manner. Taxonomic profiling of the microbiome at the strain level enabled monitoring of the prevalence and abundance of both probiotic strains, even in a complex ecosystem. Food matrix and host microbiota interactions should be considered when evaluating strain-specific probiotic effects in the future.
新生儿肠道的微生物定植对于启动婴儿免疫系统至关重要。母乳是婴儿的最佳营养物质,因其含有的益生元化合物和益生菌微生物有助于微生物群的发育。当无法进行纯母乳喂养时,添加益生菌的婴儿配方奶粉是支持婴儿微生物组发育的一种策略。然而,关于婴儿肠道微生物群以及婴儿配方奶粉中不同化合物对单个益生菌菌株的影响的知识有限,因为在复杂生态系统中进行菌株水平的检测具有挑战性。本研究的目的是展示不同蛋白质形式的婴儿配方奶粉对从母乳中分离出的两种益生菌菌株在复杂生态系统中的代谢活性的影响。通过使用包含婴儿供体微生物群的婴儿肠道模型,分析了含有完整或深度水解蛋白质的婴儿配方奶粉对供体微生物群以及两种益生菌菌株[嗜酸乳杆菌(Lactobacillus acidophilus)CECT 5716(Lf)和双歧杆菌(Bifidobacterium breve)DSM 32583(Bb)]代谢活性的影响。一种新的生物信息学流程结合特定的婴儿微生物组数据库被用于探索鸟枪法宏基因组数据集(1200兆碱基)以进行分类鉴定和菌株水平的追踪。婴儿配方奶粉中的两种蛋白质形式(即完整或深度水解蛋白质)对婴儿肠道微生物代谢活性的支持程度相同,短链脂肪酸(SCFA)水平相似即证明了这一点。有趣的是,发现肠道微生物代谢活性以菌株依赖的方式被不同程度地激活。在菌株水平对微生物组进行分类分析能够监测两种益生菌菌株的流行情况和丰度,即使是在复杂的生态系统中。未来在评估菌株特异性益生菌效应时应考虑食物基质和宿主微生物群之间的相互作用。