Suppr超能文献

尸体乳突切除术中手部动作的检测:技术说明

Detection of hand motion during cadaveric mastoidectomy dissections: a technical note.

作者信息

On Thomas J, Xu Yuan, Gonzalez-Romo Nicolas I, Gomez-Castro Gerardo, Alcantar-Garibay Oscar, Santello Marco, Lawton Michael T, Preul Mark C

机构信息

The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States.

出版信息

Front Surg. 2024 Oct 3;11:1441346. doi: 10.3389/fsurg.2024.1441346. eCollection 2024.

Abstract

BACKGROUND

Surgical approaches that access the posterior temporal bone require careful drilling motions to achieve adequate exposure while avoiding injury to critical structures.

OBJECTIVE

We assessed a deep learning hand motion detector to potentially refine hand motion and precision during power drill use in a cadaveric mastoidectomy procedure.

METHODS

A deep-learning hand motion detector tracked the movement of a surgeon's hands during three cadaveric mastoidectomy procedures. The model provided horizontal and vertical coordinates of 21 landmarks on both hands, which were used to create vertical and horizontal plane tracking plots. Preliminary surgical performance metrics were calculated from the motion detections.

RESULTS

1,948,837 landmark detections were collected, with an overall 85.9% performance. There was similar detection of the dominant hand (48.2%) compared to the non-dominant hand (51.7%). A loss of tracking occurred due to the increased brightness caused by the microscope light at the center of the field and by movements of the hand outside the field of view of the camera. The mean (SD) time spent (seconds) during instrument changes was 21.5 (12.4) and 4.4 (5.7) during adjustments of the microscope.

CONCLUSION

A deep-learning hand motion detector can measure surgical motion without physical sensors attached to the hands during mastoidectomy simulations on cadavers. While preliminary metrics were developed to assess hand motion during mastoidectomy, further studies are needed to expand and validate these metrics for potential use in guiding and evaluating surgical training.

摘要

背景

进入颞骨后部的手术入路需要精细的钻孔操作,以获得足够的暴露,同时避免损伤关键结构。

目的

我们评估了一种深度学习手部运动探测器,以在尸体乳突切除术中使用电钻时潜在地优化手部运动和精度。

方法

一种深度学习手部运动探测器在三个尸体乳突切除术中跟踪外科医生的手部运动。该模型提供了双手上21个标志点的水平和垂直坐标,用于创建垂直和水平平面跟踪图。根据运动检测结果计算初步的手术性能指标。

结果

收集了1948837个标志点检测数据,总体性能为85.9%。优势手的检测率(48.2%)与非优势手(51.7%)相似。由于视野中心显微镜光导致的亮度增加以及手在摄像头视野外的移动,出现了跟踪丢失的情况。更换器械期间平均(标准差)花费时间(秒)为21.5(12.4),调整显微镜期间为4.4(5.7)。

结论

在尸体乳突切除模拟过程中,深度学习手部运动探测器无需在手上附着物理传感器即可测量手术动作。虽然已经制定了初步指标来评估乳突切除术中的手部运动,但还需要进一步研究来扩展和验证这些指标,以便潜在地用于指导和评估手术训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c9d/11484057/8c1f955629eb/fsurg-11-1441346-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验