文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向肿瘤微环境的免疫治疗进展。

Advances in targeting tumor microenvironment for immunotherapy.

机构信息

Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Front Immunol. 2024 Oct 3;15:1472772. doi: 10.3389/fimmu.2024.1472772. eCollection 2024.


DOI:10.3389/fimmu.2024.1472772
PMID:39421736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11484021/
Abstract

The tumor microenvironment (TME) provides essential conditions for the occurrence, invasion, and spread of cancer cells. Initial research has uncovered immunosuppressive properties of the TME, which include low oxygen levels (hypoxia), acidic conditions (low pH), increased interstitial pressure, heightened permeability of tumor vasculature, and an inflammatory microenvironment. The presence of various immunosuppressive components leads to immune evasion and affects immunotherapy efficacy. This indicates the potential value of targeting the TME in cancer immunotherapy. Therefore, TME remodeling has become an effective method for enhancing host immune responses against tumors. In this study, we elaborate on the characteristics and composition of the TME and how it weakens immune surveillance and summarize targeted therapeutic strategies for regulating the TME.

摘要

肿瘤微环境(TME)为癌细胞的发生、侵袭和扩散提供了必要的条件。最初的研究揭示了 TME 的免疫抑制特性,包括低氧水平(缺氧)、酸性条件(低 pH 值)、间质压力升高、肿瘤血管通透性增加和炎症微环境。各种免疫抑制成分的存在导致免疫逃逸,并影响免疫治疗的疗效。这表明靶向 TME 在癌症免疫治疗中的潜在价值。因此,TME 重塑已成为增强宿主对肿瘤免疫反应的有效方法。在本研究中,我们详细阐述了 TME 的特征和组成,以及它如何削弱免疫监视,并总结了调节 TME 的靶向治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/32da7a8e9e59/fimmu-15-1472772-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/4a66b5e723c9/fimmu-15-1472772-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/923a4af01559/fimmu-15-1472772-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/9599e74f4102/fimmu-15-1472772-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/32da7a8e9e59/fimmu-15-1472772-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/4a66b5e723c9/fimmu-15-1472772-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/923a4af01559/fimmu-15-1472772-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/9599e74f4102/fimmu-15-1472772-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a76/11484021/32da7a8e9e59/fimmu-15-1472772-g004.jpg

相似文献

[1]
Advances in targeting tumor microenvironment for immunotherapy.

Front Immunol. 2024

[2]
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.

Int J Mol Sci. 2021-5-27

[3]
Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy.

Sci China Life Sci. 2021-4

[4]
Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.

Adv Mater. 2019-2-18

[5]
Role of mA modifications in immune evasion and immunotherapy.

Med Oncol. 2024-5-18

[6]
Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development.

Trends Cancer. 2024-7

[7]
Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy.

Virchows Arch. 2018-10-29

[8]
Targeting cancer-related inflammation in the era of immunotherapy.

Immunol Cell Biol. 2017-4

[9]
Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.

Trends Cancer. 2017-8

[10]
Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation.

Front Immunol. 2021

引用本文的文献

[1]
The double role of GABAergic system in systemic tumors: an updated review.

Front Oncol. 2025-8-18

[2]
Cancer stem cells in personalized therapy: mechanisms, microenvironment crosstalk, and therapeutic vulnerabilities.

Front Cell Dev Biol. 2025-7-30

[3]
Spatial transcriptomics and scRNA-seq: decoding tumor complexity and constructing prognostic models in colorectal cancer.

Hum Genomics. 2025-8-13

[4]
Ginkgetin from Ginkgo biloba: mechanistic insights into anticancer efficacy.

Nat Prod Bioprospect. 2025-8-5

[5]
Mapping the immunological landscape and emerging immunotherapeutic strategies in cervical cancer: a comprehensive review.

Front Oncol. 2025-7-10

[6]
CD28 and ICOS in immune regulation: Structural insights and therapeutic targeting.

Bioorg Med Chem Lett. 2025-6-15

[7]
Signature Gene Mutations in Colorectal Cancer: Potential Neoantigens for Cancer Vaccines.

Int J Mol Sci. 2025-5-9

[8]
Graphene Nanocomposites in the Targeting Tumor Microenvironment: Recent Advances in TME Reprogramming.

Int J Mol Sci. 2025-5-9

[9]
Engaging T cells for cleanup.

Front Immunol. 2025-5-6

[10]
The role of RETN in stomach adenocarcinoma (STAD): insights from pan-cancer analysis of RNA-seq data based on the TCGA database.

Discov Oncol. 2025-5-25

本文引用的文献

[1]
PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8 T cell ferroptosis.

Immunity. 2024-9-10

[2]
Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells.

Cell Stem Cell. 2024-9-5

[3]
Regulation of anti-tumor immunity by metal ion in the tumor microenvironment.

Front Immunol. 2024

[4]
PD-1-CD28-enhanced receptor and CD19 CAR-modified tumor-infiltrating T lymphocytes produce potential anti-tumor ability in solid tumors.

Biomed Pharmacother. 2024-6

[5]
Phase I and Randomized Phase II Study of Ruxolitinib With Frontline Neoadjuvant Therapy in Advanced Ovarian Cancer: An NRG Oncology Group Study.

J Clin Oncol. 2024-7-20

[6]
Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors.

J Immunother Cancer. 2024-4-19

[7]
Efficacy, safety, and biomarker analyses of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with advanced non-small cell lung cancer.

J Immunother Cancer. 2024-3-13

[8]
Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial.

Nat Med. 2024-4

[9]
PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer.

Front Oncol. 2024-2-15

[10]
TGF-β1-Induced SOX18 Elevation Promotes Hepatocellular Carcinoma Progression and Metastasis Through Transcriptionally Upregulating PD-L1 and CXCL12.

Gastroenterology. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索