Suppr超能文献

使用实时电磁运动跟踪技术对脑部PET成像进行高分辨率运动补偿。

High-resolution motion compensation for brain PET imaging using real-time electromagnetic motion tracking.

作者信息

Tan Wanbin, Wang Zipai, Zeng Xinjie, Boccia Anthony, Wang Xiuyuan, Li Yixin, Li Yi, Fung Edward K, Qi Jinyi, Zeng Tianyi, Gupta Ajay, Goldan Amir H

机构信息

Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA.

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA.

出版信息

Med Phys. 2025 Jan;52(1):201-218. doi: 10.1002/mp.17437. Epub 2024 Oct 18.

Abstract

BACKGROUND

Substantial improvements in spatial resolution in brain positron emission tomography (PET) scanners have greatly reduced partial volume effect, making head movement the main source of image blur. To achieve high-resolution PET neuroimaging, precise real-time estimation of both head position and orientation is essential for accurate motion compensation.

PURPOSE

A high-resolution electromagnetic motion tracking (EMMT) system with an event-by-event motion correction is developed for PET-CT scanners.

METHODS

EMMT is comprised of a source, an array of sensors, and a readout electronic unit (REU). The source acts as a transmitter and emits an EM dipole field. It is placed in close proximity to the sensor array and detects changes in EM flux density due to sensor movement. The REU digitizes signals from each sensor and captures precise rotational and translational movements in real time. Tracked motion in the EMMT coordinate system is synchronized with the PET list-mode data and transformed into the scanner coordinate system by locating paired positions in both systems. The optimal rigid motion is estimated using singular value decomposition. The rigid motion and depth-of-interaction (DOI) parallax effect are corrected by event-by-event rebinning of mispositioned lines-of-response (LORs). We integrated the EMMT with our recently developed ultra-high resolution Prism-PET prototype brain scanner and a commercial Siemens Biograph mCT PET-CT scanner. We assessed the imaging performance of the Prism-PET/EMMT system using multi-frame motion of point sources and phantoms. The mCT/EMMT system was validated using a set of point sources attached to both a mannequin head and a human volunteer, for simulating multiframe and continuous motions, respectively. Additionally, a human subject for [F]MK6240 PET imaging was included.

RESULTS

The tracking accuracy of the Prism-PET/EMMT system was quantified as a root-mean-square (RMS) error of 0.49 for 100 axial rotations, and an RMS error of 0.15 mm for 100 mm translations.The percent difference (%diff) in average full width at half maximum (FWHM) of point source between motion-corrected and static images, within a motion range of and 10 mm from the center of the scanner's field-of-view (FOV), was 3.9%. The measured recovery coefficients of the 2.5-mm diameter sphere in the activity-filled partial volume correction phantom were 23.9%, 70.8%, and 74.0% for the phantom with multi-frame motion, with motion and motion compensation, and without motion, respectively. In the mCT/EMMT system, the %diff in average FWHM of point sources between motion-corrected and static images, within a motion range of and 10 mm from the center of the FOV, was 14%. Applying motion correction to the [F]MK6240 PET imaging reduced the motion-induced spill-in artifact in the lateral ventricle region, lowering its standardized uptake value ratio (SUVR) from 0.70 to 0.34.

CONCLUSIONS

The proposed EMMT system is a cost-effective, high frame-rate, and none-line-of-sight alternative to infrared camera-based tracking systems and is capable of achieving high rotational and translational tracking accuracies for mitigating motion-induced blur in high-resolution brain dedicated PET scanners.

摘要

背景

脑正电子发射断层扫描(PET)扫描仪的空间分辨率有了显著提高,极大地减少了部分容积效应,使头部运动成为图像模糊的主要来源。为了实现高分辨率PET神经成像,精确实时估计头部位置和方向对于准确的运动补偿至关重要。

目的

为PET-CT扫描仪开发一种具有逐事件运动校正功能的高分辨率电磁运动跟踪(EMMT)系统。

方法

EMMT由一个源、一组传感器和一个读出电子单元(REU)组成。源充当发射器并发射电磁偶极场。它放置在靠近传感器阵列的位置,并检测由于传感器移动引起的磁通密度变化。REU将来自每个传感器的信号数字化,并实时捕获精确的旋转和平移运动。EMMT坐标系中的跟踪运动与PET列表模式数据同步,并通过在两个系统中定位配对位置转换为扫描仪坐标系。使用奇异值分解估计最佳刚体运动。通过对错误定位的响应线(LOR)进行逐事件重新分箱来校正刚体运动和相互作用深度(DOI)视差效应。我们将EMMT与我们最近开发的超高分辨率Prism-PET原型脑扫描仪和商用西门子Biograph mCT PET-CT扫描仪集成在一起。我们使用点源和体模的多帧运动评估了Prism-PET/EMMT系统的成像性能。mCT/EMMT系统分别使用连接到人体模型头部和人类志愿者的一组点源进行了验证,以模拟多帧和连续运动。此外,还纳入了一名进行[F]MK6240 PET成像的人类受试者。

结果

Prism-PET/EMMT系统的跟踪精度量化为100次轴向旋转的均方根(RMS)误差为0.49 ,100毫米平移的RMS误差为0.15毫米。在距扫描仪视野(FOV)中心 和10毫米的运动范围内,运动校正图像和静态图像中点源的平均半高宽(FWHM)的百分比差异(%diff)为3.9%。在活动填充的部分容积校正体模中,直径2.5毫米球体的测量恢复系数分别为:具有多帧运动的体模为23.9%,具有运动和运动补偿的体模为70.8%,无运动的体模为74.0%。在mCT/EMMT系统中,在距FOV中心 和10毫米的运动范围内,运动校正图像和静态图像中点源的平均FWHM的%diff为14%。对[F]MK6240 PET成像应用运动校正减少了侧脑室区域的运动诱导溢出伪影,将其标准化摄取值比率(SUVR)从0.70降低到了0.34。

结论

所提出的EMMT系统是一种经济高效、高帧率且无需视线的替代基于红外相机的跟踪系统,能够实现高旋转和平移跟踪精度,以减轻高分辨率脑专用PET扫描仪中运动诱导的模糊。

相似文献

1
High-resolution motion compensation for brain PET imaging using real-time electromagnetic motion tracking.
Med Phys. 2025 Jan;52(1):201-218. doi: 10.1002/mp.17437. Epub 2024 Oct 18.
3
The design and implementation of a motion correction scheme for neurological PET.
Phys Med Biol. 2003 Apr 21;48(8):959-78. doi: 10.1088/0031-9155/48/8/301.
5
List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction.
Phys Med Biol. 2013 Aug 21;58(16):5567-91. doi: 10.1088/0031-9155/58/16/5567. Epub 2013 Jul 29.
7
Inter-scanner Aβ-PET harmonization using barrel phantom spatial resolution matching.
Alzheimers Dement (Amst). 2024 Mar 11;16(1):e12561. doi: 10.1002/dad2.12561. eCollection 2024 Jan-Mar.
8
Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors.
Phys Med Biol. 2017 Aug 18;62(17):7148-7166. doi: 10.1088/1361-6560/aa82e8.
9
Markerless head motion tracking and event-by-event correction in brain PET.
Phys Med Biol. 2023 Dec 12;68(24):245019. doi: 10.1088/1361-6560/ad0e37.

本文引用的文献

1
Depth-encoding using optical photon TOF in a prism-PET detector with tapered crystals.
Med Phys. 2024 Jun;51(6):4044-4055. doi: 10.1002/mp.17095. Epub 2024 Apr 29.
2
Decision Tree-Based Demultiplexing for Prism-PET.
IEEE Trans Nucl Sci. 2023 Jul;70(7):1425-1430. doi: 10.1109/tns.2023.3282831. Epub 2023 Jun 5.
3
Resolving inter-crystal scatter in a light-sharing depth-encoding PET detector.
Phys Med Biol. 2024 Feb 2;69(3). doi: 10.1088/1361-6560/ad19f1.
4
Supervised Deep Learning for Head Motion Correction in PET.
Med Image Comput Comput Assist Interv. 2022 Sep;13434:194-203. doi: 10.1007/978-3-031-16440-8_19. Epub 2022 Sep 16.
5
Markerless head motion tracking and event-by-event correction in brain PET.
Phys Med Biol. 2023 Dec 12;68(24):245019. doi: 10.1088/1361-6560/ad0e37.
6
Interleaved signal multiplexing readout in depth encoding Prism-PET detectors.
Med Phys. 2023 Jul;50(7):4234-4243. doi: 10.1002/mp.16456. Epub 2023 May 16.
7
Super-resolution in brain positron emission tomography using a real-time motion capture system.
Neuroimage. 2023 May 15;272:120056. doi: 10.1016/j.neuroimage.2023.120056. Epub 2023 Mar 26.
9
Recent Advances in Tracking Devices for Biomedical Ultrasound Imaging Applications.
Micromachines (Basel). 2022 Oct 29;13(11):1855. doi: 10.3390/mi13111855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验