Suppr超能文献

一种用于高分辨率定量神经成像的共形TOF-DOI棱镜正电子发射断层扫描仪原型。

A conformal TOF-DOI Prism-PET prototype scanner for high-resolution quantitative neuroimaging.

作者信息

Zeng Xinjie, Wang Zipai, Tan Wanbin, Petersen Eric, Cao Xinjie, LaBella Andy, Boccia Anthony, Franceschi Dinko, de Leon Mony, Chiang Gloria Chia-Yi, Qi Jinyi, Biegon Anat, Zhao Wei, Goldan Amir H

机构信息

Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA.

Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA.

出版信息

Med Phys. 2023 Jan 18. doi: 10.1002/mp.16223.

Abstract

BACKGROUND

Positron emission tomography (PET) has had a transformative impact on oncological and neurological applications. However, still much of PET's potential remains untapped with limitations primarily driven by low spatial resolution, which severely hampers accurate quantitative PET imaging via the partial volume effect (PVE).

PURPOSE

We present experimental results of a practical and cost-effective ultra-high resolution brain-dedicated PET scanner, using our depth-encoding Prism-PET detectors arranged along a compact and conformal gantry, showing substantial reduction in PVE and accurate radiotracer uptake quantification in small regions.

METHODS

The decagon-shaped prototype scanner has a long diameter of 38.5 cm, a short diameter of 29.1 cm, and an axial field-of-view (FOV) of 25.5 mm with a single ring of 40 Prism-PET detector modules. Each module comprises a 16 × 16 array of 1.5 × 1.5 × 20-mm lutetium yttrium oxyorthosillicate (LYSO) scintillator crystals coupled 4-to-1 to an 8 × 8 array of silicon photomultiplier (SiPM) pixels on one end and to a prismatoid light guide array on the opposite end. The scanner's performance was evaluated by measuring depth-of-interaction (DOI) resolution, energy resolution, timing resolution, spatial resolution, sensitivity, and image quality of ultra-micro Derenzo and three-dimensional (3D) Hoffman brain phantoms.

RESULTS

The full width at half maximum (FWHM) DOI, energy, and timing resolutions of the scanner are 2.85 mm, 12.6%, and 271 ps, respectively. Not considering artifacts due to mechanical misalignment of detector blocks, the intrinsic spatial resolution is 0.89-mm FWHM. Point source images reconstructed with 3D filtered back-projection (FBP) show an average spatial resolution of 1.53-mm FWHM across the entire FOV. The peak absolute sensitivity is 1.2% for an energy window of 400-650 keV. The ultra-micro Derenzo phantom study demonstrates the highest reported spatial resolution performance for a human brain PET scanner with perfect reconstruction of 1.00-mm diameter hot-rods. Reconstructed images of customized Hoffman brain phantoms prove that Prism-PET enables accurate radiotracer uptake quantification in small brain regions (2-3 mm).

CONCLUSIONS

Prism-PET will substantially strengthen the utility of quantitative PET in neurology for early diagnosis of neurodegenerative diseases, and in neuro-oncology for improved management of both primary and metastatic brain tumors.

摘要

背景

正电子发射断层扫描(PET)对肿瘤学和神经学应用产生了变革性影响。然而,PET的许多潜力仍未得到充分发挥,其局限性主要由低空间分辨率驱动,这通过部分容积效应(PVE)严重阻碍了准确的定量PET成像。

目的

我们展示了一种实用且经济高效的超高分辨率脑部专用PET扫描仪的实验结果,该扫描仪使用沿紧凑且贴合人体的机架排列的深度编码棱镜PET探测器,显示出PVE大幅降低以及在小区域内准确的放射性示踪剂摄取定量。

方法

十边形原型扫描仪的长直径为38.5厘米,短直径为29.1厘米,轴向视野(FOV)为25.5毫米,有一圈40个棱镜PET探测器模块。每个模块包括一个16×16阵列的1.5×1.5×20毫米硅酸钇镥(LYSO)闪烁晶体,一端以4比1的方式耦合到一个8×8阵列的硅光电倍增管(SiPM)像素,另一端耦合到一个棱柱状光导阵列。通过测量超微德伦佐体模和三维(3D)霍夫曼脑体模的相互作用深度(DOI)分辨率、能量分辨率、时间分辨率、空间分辨率、灵敏度和图像质量来评估扫描仪的性能。

结果

扫描仪的半高宽(FWHM)DOI、能量和时间分辨率分别为2.85毫米、12.6%和271皮秒。不考虑由于探测器模块机械未对准导致的伪影,固有空间分辨率为0.89毫米FWHM。用三维滤波反投影(FBP)重建的点源图像在整个FOV上显示平均空间分辨率为1.53毫米FWHM。对于400 - 650 keV的能量窗口,峰值绝对灵敏度为1.2%。超微德伦佐体模研究表明,对于人脑PET扫描仪,该研究报告了最高的空间分辨率性能,能够完美重建直径为1.00毫米的热棒。定制霍夫曼脑体模的重建图像证明,棱镜PET能够在小脑区域(2 - 3毫米)进行准确的放射性示踪剂摄取定量。

结论

棱镜PET将大大增强定量PET在神经学中用于神经退行性疾病早期诊断以及在神经肿瘤学中用于改善原发性和转移性脑肿瘤管理的效用。

相似文献

3
Depth-encoding using optical photon TOF in a prism-PET detector with tapered crystals.
Med Phys. 2024 Jun;51(6):4044-4055. doi: 10.1002/mp.17095. Epub 2024 Apr 29.
5
High-Resolution Depth-Encoding PET Detector Module with Prismatoid Light-Guide Array.
J Nucl Med. 2020 Oct;61(10):1528-1533. doi: 10.2967/jnumed.119.239343. Epub 2020 Feb 28.
6
Performance of long rectangular semi-monolithic scintillator PET detectors.
Med Phys. 2019 Apr;46(4):1608-1619. doi: 10.1002/mp.13432. Epub 2019 Feb 20.
8
Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors.
Phys Med Biol. 2017 Aug 18;62(17):7148-7166. doi: 10.1088/1361-6560/aa82e8.
10
A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging.
J Nucl Med. 2016 Jul;57(7):1130-5. doi: 10.2967/jnumed.115.165886. Epub 2016 Mar 24.

引用本文的文献

1
Dual-ended readout TOF-DOI PET detectors based on 3.2 mm and 1.6 mm pitch LYSO arrays.
EJNMMI Phys. 2025 May 27;12(1):51. doi: 10.1186/s40658-025-00759-y.
3
Fast high-resolution lifetime image reconstruction for positron lifetime tomography.
Commun Phys. 2025;8(1):181. doi: 10.1038/s42005-025-02100-6. Epub 2025 Apr 26.
5
Flexible and modular PET: Evaluating the potential of TOF-DOI panel detectors.
Med Phys. 2025 May;52(5):2845-2860. doi: 10.1002/mp.17741. Epub 2025 Mar 16.
8
High-resolution motion compensation for brain PET imaging using real-time electromagnetic motion tracking.
Med Phys. 2025 Jan;52(1):201-218. doi: 10.1002/mp.17437. Epub 2024 Oct 18.
9
Performance Characteristics of the NeuroEXPLORER, a Next-Generation Human Brain PET/CT Imager.
J Nucl Med. 2024 Aug 1;65(8):1320-1326. doi: 10.2967/jnumed.124.267767.
10
Depth-encoding using optical photon TOF in a prism-PET detector with tapered crystals.
Med Phys. 2024 Jun;51(6):4044-4055. doi: 10.1002/mp.17095. Epub 2024 Apr 29.

本文引用的文献

1
Interleaved signal multiplexing readout in depth encoding Prism-PET detectors.
Med Phys. 2023 Jul;50(7):4234-4243. doi: 10.1002/mp.16456. Epub 2023 May 16.
2
Small nuclei identification with a hemispherical brain PET.
EJNMMI Phys. 2022 Oct 8;9(1):69. doi: 10.1186/s40658-022-00498-4.
4
multi-patient dose synthesis of [18F]Flumazenil via a copper-mediated F-fluorination.
EJNMMI Radiopharm Chem. 2022 Mar 20;7(1):5. doi: 10.1186/s41181-022-00158-z.
5
PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area.
Cancers (Basel). 2022 Feb 22;14(5):1103. doi: 10.3390/cancers14051103.
6
FDG-PET assessment of the locus coeruleus in Alzheimer's disease.
Neuroimage Rep. 2021 Feb 1;1(1):100002. doi: 10.1016/j.ynirp.2020.100002. eCollection 2021 Mar.
7
PET Imaging in Neurodegeneration and Neuro-oncology: Variants and Pitfalls.
Semin Nucl Med. 2021 Sep;51(5):408-418. doi: 10.1053/j.semnuclmed.2021.03.003. Epub 2021 Apr 3.
8
Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments.
EJNMMI Phys. 2021 Mar 24;8(1):30. doi: 10.1186/s40658-021-00370-x.
9
Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method.
IEEE Trans Med Imaging. 2021 Jun;40(6):1579-1590. doi: 10.1109/TMI.2021.3062066. Epub 2021 Jun 1.
10
[F]FET PET Uptake Indicates High Tumor and Low Necrosis Content in Brain Metastasis.
Cancers (Basel). 2021 Jan 19;13(2):355. doi: 10.3390/cancers13020355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验